• Title/Summary/Keyword: UV-induced skin damage

Search Result 86, Processing Time 0.04 seconds

The Protective Effects of Astragali Radix Against UV Induced Cellular Damage in Human Keratinocytes (황기의 자외선에 의한 세포 손상을 막는 보호 효과)

  • Lee, Jin-Young;Park, Hye-Yoon;Yeom, Myeong-Hun;Kim, Duck-Hee;Kim, Han-Kon
    • Korean Journal of Pharmacognosy
    • /
    • v.39 no.4
    • /
    • pp.300-304
    • /
    • 2008
  • The root of Astragalus membranaceus Bunge (Leguminosae) has been used in the Korean oriental medicine for strengthening the vital energy. UV irradiation has been suggested as a major cause of photo aging in skin. In order to investigate protective effects against UV induced cellular damage, Astragali Radix was extracted with 70% ethanol and dissolved in DMSO. The protective effect was detected by MTT assay, LDH assay, and Comet assay in immortalized human keratinocyte cell line, HaCaT cell system after UV irradiation. Astragli Radix 70% EtOH extract reduced UV induced cellular damage in cell survival, membrane integrity and DNA damage.

Effect of APB-01 on the Ultraviolet-Induced Photoaging and Wrinkle Formation in the Hairless Mice (Hairless Mice를 이용한 광노화 모델에서 APB-01의 경구반복투여에 의한 피부주름개선 효과 시험)

  • 이지해;이병석;변범선;김완기;이상준;심영철;김배환
    • Toxicological Research
    • /
    • v.19 no.4
    • /
    • pp.303-310
    • /
    • 2003
  • Ultraviolet (UV) is thought to induce erythema, sun-burn, photo-toxicity, photo-allergy, photo-aging and sometimes skin tumor. To investigate the photo-protective effects of APB-01 (Amore-Pacific Beauty-01, the mixture of Jaummi-dan and Fujiflavone P10) on UV-induced skin damage, forty of SKH hairless female mice were orally administered with APB-01 or saline fifth a week, and irradiated with UV third a week for up to ten weeks. We examined the relationship between visible changes and skin damage in the dermis and epidermis. In the APB-01 treated group, a better skin and less wrinkles formation were observed when compared to the UV control group. This results demonstrated that oral administration of APB-01 seems to have photo-protective effects on UV-induced skin damage of hairless mice due to an inhibitory effect on collagen breakdown, and the model using hairless mice is very useful to investigate the efficacy of functional beauty foods.

Inhibitory effects of Prunus persica flower extracts on UV-induced skin damage

  • Lee, Kang-Tae;Yoo, Young-Kyoung;Kim, Sung-Woo;Jeong, Ji-Hean;Jo, Byoung-Kee;Kim, Young-Ha;Yang, Hye-Eum;Heo, Moon-Young;Kim, Hyun-Pyo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.27 no.1
    • /
    • pp.73-81
    • /
    • 2001
  • For an attempt to develop safe materials protecting UV-induced skin damage, plant extracts were evaluated for their antioxidative and free radical scavenging activities. From the results of these screening procedures, the ethanol extract of the flowers of Prunus persica was selected for further study. It was found that Prunus persica (50-200 $\mu\textrm{g}$/㎖) inhibited UVB-induced DNA damage measured by tail moment in the Single Cell Gel Electrophoresis(COMET assay) and inhibited UV-induced lipid peroxidation, expecially against UVB-induced peroxidation at higher than 10 $\mu\textrm{g}$/㎖. Also P.persica(100∼1,000 $\mu\textrm{g}$/㎖) inhibited the amount of $\^$14/C-arachidonic acid metabolites release from UVB-irradiated keratinocytes and it possessed the protective activity against UV-induced cytotoxicity of keratinocytes. All these results indicate that the flowers of P. persica extract may be beneficial for protection UV-induced skin damage when topically applied.

  • PDF

Protection of the Flowers of Prunus persica Extract from Ultraviolet B-Induced Damage of Normal Human Keratinocytes

  • Kim, Young-Ha;Yang, Hye-Eun;Kim, Jong-Ha;Heo, Moon-Young;Kim, Hyun-Pyo
    • Archives of Pharmacal Research
    • /
    • v.23 no.4
    • /
    • pp.396-400
    • /
    • 2000
  • For an attempt to develop safe materials protecting solar ultraviolet (UV)-induced skin damage, plant extracts were evaluated for their inhibitory activities of free radical generation and arachidonic acid/metabolites release from UVB-irradiated normal human keratinocytes. From the results of these screening procedures, the ethanol extract of the flowers of Prunus persica (Ku-35) was selected for further study. It was found that Ku-35 (100-1,000 ${u}g/m\ell$) inhibited the amount of $^{14}C$-arachidonic acid/metabolites release from UVB-irradiated keratinocytes. It was also demonstrated that Ku-35 possessed the protective activity against UV-induced cytotoxicity of keratinocytes and fibroblasts. In addition, Ku-35 was revealed to protect UVB-induced erythema formation using guinea pigs in preliminary in vivo study. All these results indicate that the flowers of P. persica extract may be beneficial for protecting UV-induced skin damage when topically applied.

  • PDF

Protective Effects of Prunus persica Flesh Extract (PPFE) on UV-Induced Oxidative Stress and Matrix Metalloproteinases Expression in Human Skin Cells

  • Park, Hyen-Joo;Park, Kwang-Kyun;Hwang, Jae-Kwan;Chung, Won-Yoon;Kim, Gi-Dae;Lee, Min-Ai;Lee, Sang-Kook
    • Natural Product Sciences
    • /
    • v.18 no.1
    • /
    • pp.52-59
    • /
    • 2012
  • In our continuous efforts to procure the active materials from natural products in the protective effects of oxidative stress or UV damage to skin cells we found the Prunus persica flesh extract (PPFE) is considerable to meet the demand to protect the skin damage. PPFE attenuated cell damage induced by hypoxanthine-xanthine oxidase in cultured human keratinocytes, indicating that PPFE has the potential of the scavenging effect of reactive oxygen species (ROS) in human skin cell. Moreover, PPFE significantly suppressed UVA-induced ROS production determined by the oxidation of 2,7-dichlorodihydrofluorescein diacetate (DCFH) using FACS analysis. Additional study revealed that UVA irradiation of HaCaT human keratinocytes increased the gelatinolytic activities of matrix metalloproteinase-2, and -9 (MMP-2, -9) and mRNA expression of MMP-9 analyzing by a real-time reverse transcriptase-polymerase chain reaction (RT-PCR), and these events were significantly suppressed by the treatment with PPFE. These results suggest that PPFE might be applicable as natural ingredients for skin antiaging agents via UV-induced ROS scavenging activity and suppression of MMP expression in the skin cells.

Effects of Catechin-rich Green Tea Extract on the MMP-1 Activity of HaCaT Keratinocyte Cells and on UVB-induced Skin Damage in Hairless Mice (각질형성세포에서 MMP-1 활성 및 자외선 유도 무모쥐 피부손상에 대한 카테킨 고함유 녹차추출물의 영향)

  • Yang, Won Kyung;Park, Yang Chun;Kim, Bok Kyu;Choi, Jeong June;Ryu, Geon Seek;Kim, Seung Hyung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.27 no.2
    • /
    • pp.143-150
    • /
    • 2019
  • Background: Skin is an organ that protects the human body from various environmental stimuli that can induce immune system activation. Skin aging can be largely divided into two categories: physiological aging, which is caused by the a decreased physiological function of the skin and structural changes with aging, and photoaging, which is caused by the chemical stress induced by external stimuli such as ultraviolet (UV) radiation. Methods and Results: The objective of this study was to investigate the anti-wrinkle and UV protective effect of catechin-rich green tea extract (CGTE) in activated keratinocyte (HaCaT cells) and UV-induced skin damage in hairless mice. The results showed that CGTE inhibits the tumor necrosis factor-alpha interferon-gamma ($TNF-{\alpha}+IFN-{\gamma}$)-induced expression of matrix metalloproteinase (MMP)-1 in HaCaT cells. In addition, the CGTE treatment significantly reduced wrinkle formation, epidermal thickness, collagen deposition, and transepidermal water loss in dorsal skin irradiated with UVB. However, the ${\beta}$-glucosidase activity was significantly increased. The CGTE treatment inhibits mRNA expression and enzyme activity of MMP-2 and MMP-9 in the dorsal skin irradiated with UVB. Conclusions: It is expected that CGTE can be effectively used as a functional food and cosmetic ingredient to improve skin moisture retention and reduce wrinkle formation.

Protective Effect of Cheonjeongkibo-Dan UV-Induced Cellular Damage in Human Dermal Fibroblast (천정기보단(天精氣保丹)의 자외선에 의한 세포 손상 억제 효과)

  • Lee, Ghang-Tai;Park, Si-Jun;Lee, Jung-No;Lee, Kwang-Sik;Kim, Dae-Sung;Mun, Yeun-Ja;Lee, Kun-Kuk;Woo, Won-Hong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.6
    • /
    • pp.950-955
    • /
    • 2010
  • In this study, we prepared CheonJeongKiBo-Dan(7 oriental medicinal plants, 7OMP: Astragalus Membranaceus root, Panax Ginseng root, Glycyrrhiza Glabra (licorice) root, Schizandra Chinensis fruit, Polygonatum Odoratum, Rehmannia Glutinosa root, Paeonia Albiflora root) by extracting them in one reactor and studied its efficacies on skin. UV irradiation has been suggested as a major cause of photoaging in skin. In order to investigate protective effects against UV-B induced cellular damage, 7OMP was extracted with 70% ethanol and dissolved in DMSO. The protective effect was detected by MTT assay, reactive oxygen species (ROS) generation, phosphorylation of ATR and p53 in human dermal fibroblast cell system after UV-B irradiation. 7OMP reduced UV-B-induced cellular damage in HDFs cells, and inhibited ROS generation. UV-B-induced toxicity accompanying ROS production and the resultant DNA damage are responsible for activation of ATR, p53 and Bad. In this study, 7OMP hampered phosphorylations of ATR and p53 in human dermal fibroblasts. Therefore, 7OMP may be protective against UV-induced skin photoaging.

Protective effects of red orange (Citrus sinensis [L.] Osbeck [Rutaceae]) extract against UVA-B radiation-induced photoaging in Skh:HR-2 mice

  • Yoon Hee Kim;Cho Young Lim;Jae In Jung ;Tae Young Kim;Eun Ji Kim
    • Nutrition Research and Practice
    • /
    • v.17 no.4
    • /
    • pp.641-659
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: The skin is the outermost organ of the human body and plays a protective role against external environmental damages, such as sunlight and pollution, which affect anti-oxidant defenses and skin inflammation, resulting in erythema or skin reddening, immunosuppression, and epidermal DNA damage. MATERIALS/METHODS: The present study aimed to investigate the potential protective effects of red orange complex H extract (ROC) against ultraviolet (UV)-induced skin photoaging in Skh:HR-2 mice. ROC was orally administered at doses of 20, 40, and 80 mg/kg/day for 13 weeks, along with UV irradiation of the mice for 10 weeks. RESULTS: ROC improved UV-induced skin barrier parameters, including erythema, melanin production, transepidermal water loss, elasticity, and wrinkle formation. Notably, ROC inhibited the mRNA expression of pro-inflammatory cytokines (interleukin 6 and tumor necrosis factor α) and melanogenesis. In addition, ROC recovered the UV-induced decrease in the hyaluronic acid and collagen levels by enhancing genes expression. Furthermore, ROC significantly downregulated the protein and mRNA expression of matrix metalloproteinases responsible for collagen degradation. These protective effects of ROC against photoaging are associated with the suppression of UV-induced phosphorylation of c-Jun NH2-terminal kinase and activator protein 1 activation. CONCLUSIONS: Altogether, our findings suggest that the oral administration of ROC exerts potential protective activities against photoaging in UV-irradiated hairless mice.

Photoprotective Effects of Soybean Extract against UV-Induced Damage in Human Fibroblast and Hairless Mouse Model

  • Cho, Young-Chang;Han, Jae-Bok;Park, Sang-Ik
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.20-29
    • /
    • 2019
  • Soy isoflavones have been reported to possess many physiological activities such as antioxidant activity and inhibition of cancer cell proliferation. This study investigated the photoprotective effects of soybean extract in human fibroblast cell line and hairless mice model. Human fibroblast was treated with soybean extract before and after ultraviolet B (UVB; 290-302 nm) irradiation. In the soybean extract treated group, the cells showed better resistance to ultraviolet (UV) than control group. The amount of type I collagen recovered from the soybean treated group was higher than the vehicle group exposed to UV-induced damage. Moreover, increased expression of metalloproteinases-1 as a result of UV irradiation was suppressed by the soybean extract. Female mice were orally administered soybean extract and irradiated with UVB light for 8 weeks. The effects of the soybean extract on the skin appearance, collagen deposition and epidermal thickness in the UV-damaged mouse skin were analyzed using histopathological methods. In soybean extract treated group, the skin had a better morphology than that of the control group. Furthermore, the amount of type I collagen was increased and overexpression of MMP-1 was reduced in the soybean extract group compared to vehicle group. Additionally, up-regulation of pro-inflammatory cytokines induced by UV irradiation was suppressed by dietary soybean extract treatment. It appears that soybean extract had a photoprotective effect, including anti-aging and anti-inflammatory effect, from UV-induced damage in not only human fibroblast, but also hairless mice. We confirmed that these effects were possibly due to promotion of collagen synthesis and inhibition of MMP-1 expression.

Ethanol Extract of Dioscorea batatas Stimulates Procollagen Production and Reduces UVB-induced MMPs Activity in Skin (마 에탄올추출물의 피부 collagen 합성 촉진 및 MMPs 활성 억제효과)

  • Kim, Dae Sung;Jeon, Byoung Kook;Lim, Nan Young;Mun, Yeun Ja;Lee, Young Eun;Woo, Won Hong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.2
    • /
    • pp.183-188
    • /
    • 2013
  • Ultraviolet (UV) B irradiation induces the production of matrix metalloproteinases (MMPs), which are responsible for the degradation or synthesis inhibition of collagenous extracellular matrix in connective tissues, causing skin photoaging. In this study, we examined the inhibitory effect of MMP-1 expression of yam extract in tumor necrosis factor-alpha (TNF-${\alpha}$)-stimulated human dermal fibroblast neonatal (HDFn) cell and preventive effect of UVB-induced damage in hairless mice skin. The synthesis of procollagen and the release of MMP-1 in HDFn cells were measured by EIA kit and MMP-1 assay kit, respectively. UVB radiation was applied to the backs of the mice three times a week for 8 weeks. Mice were randomly divided into three groups, and were topical application with the Dioscorea batatas (DB, 6%) or vehicle. Reduction of TNF-${\alpha}$-induced procollagen synthesis was increased by DB (50 ug/ml), which was higher than positive control group (TGF-${\beta}$). Also, pre-treatment of HDFn cells with DB inhibited TNF-${\alpha}$-induced release of MMP-1. In vivo study, we found that preventive effect of DB against UV-induced epidermal thickness. DB suppressed the expression of MMP-3 and MMP-13 induced by UVB irradiation. Our results show that DB have preventive effect of UV-induced skin damage in hairless mice.