• Title/Summary/Keyword: UV-NIL

Search Result 52, Processing Time 0.037 seconds

Experiment and Numerical Study on Thermal Characteristics of UV-NIL Process Considering the Cure Kinetics of Photo-polymer (레진의 경화 반응을 고려한 UV-NIL공정의 열특성에 관한 실험 및 수치해석 연구)

  • Kim, Woo-Song;Park, Gyeong-Seo;Nam, Jin-Hyun;Yim, Hong-Jae;Jang, Si-Yeol;Lee, Kee-Sung;Jeong, Jay;Lim, Si-Hyeong;Shin, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1847-1850
    • /
    • 2008
  • The process conditions during ultraviolet nanoimprint lithography (UV-NIL) process such as temperature, stamping pressure, UV irradiation, etc. are effective factors for successful imprinting of complex and fine patterns. In this study, the effects of aluminum mold on the thermal characteristics of UV-NIL process were investigated through imprinting experiments and numerical simulations. The temperature of polymer resin on mold was measured to study thermal characteristics during UV curing. From the experimental and numerical results, the importance of curing reaction control for UV-NIL process was discussed for deformation characteristics.

  • PDF

Single-step UV nanoimprint lithography on a 4" Si wafer (4" Si 웨이퍼에 대한 single-step UV 나노임프린트 리소그래피)

  • 정준호;손현기;심영석;신영재;이응숙;최성욱;김재호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.199-202
    • /
    • 2003
  • Ultraviolet-nanoimprint lithography (UV-NIL) is a promising method for cost-effectively defining nanoscale structures at room temperature and low pressure. Since the resolution of nanostructures depends strongly upon that of nanostamps, the nanostamp fabrication technology is a key technology to UV-NIL. In this paper, a 5$\times$5$\times$0.09 in. quartz stamp whose critical dimension is 377 nm was fabricated using the etch process in which a Cr film was employed as a hard mask for transferring nanostructures onto the quartz plate. To effectively apply tile fabricated 5-in. stamp to UV-NIL on a 4-in. Si wafer, we have proposed a new UV-NIL process using a multi-dispensing method as a way to supply resist on a wafer Experiments have shown that the multi-dispensing method can enable UV-NIL rising a large-area stamp.

  • PDF

UV nanoimprint lithography using a multi-dispensing method (다중 디스펜싱 방법에 의한 UV-나노임프린트 리소그래피)

  • 심영석;손현기;신영재;이응숙;정준호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.7
    • /
    • pp.604-610
    • /
    • 2004
  • Ultraviolet-nanoimprint lithography (UV-NIL) is a promising method for cost-effectively defining nanoscale structures at room temperature and low pressure. Since the resolution of transferred nanostructures depends strongly upon that of nanostamps, the nanostamp fabrication technology is a key technology to UV-NIL. In this paper, a $5\times5\times0.09$ in. quartz stamp whose critical dimension is 377 nm was fabricated using the etching process in which a Cr film was employed as a hard mask for transferring nanostructures onto the quartz plate. To effectively apply the fabricated 5-in. stamp to UV-NIL on a 4-in. Si wafer, we have proposed a new UV-NIL process using a multi-dispensing method as a way to supply resist on a wafer. Experiments have shown that the multi-dispensing method can enable UV-NIL using a large-area stamp.

Nano-patterning technology using an UV-NIL method (UV-NIL(Ultraviolet-Nano-Imprinting-Lithography) 방법을 이용한 나노 패터닝기술)

  • 심영석;정준호;손현기;신영재;이응숙;최성욱;김재호
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.1
    • /
    • pp.39-45
    • /
    • 2004
  • Ultraviolet-nanoimprint lithography (UV-NIL) is a promising method for cost-effectively defining nanoscale structures at room temperature and low pressure. A 5${\times}$5${\times}$0.09 in. quartz stamp is fabricated using the etch process in which a Cr film was employed as a hard mask for transferring nanostructures onto the quartz plate. FAS(Fluoroalkanesilane) is used as a material for anti-adhesion surface treatment on the stamp and a thin organic film to improve adhesion on a wafer is formed by spin-coating. The low viscosity resin droplets with a nanometer scale volume are dispensed on the whole area of the coated wafer. The UV-NIL experiments have been performed using the EVG620-NIL. 370 nm - 1 m features on the stamp have been transferred to the thin resin layer on the wafer using the multi-dispensing method and UV-NIL process. We have measured the imprinted patterns and residual layer using SEM and AFM to evaluate the potential of the process.

A Study on the Formation of Air Bubble by the Droplet Volume and Dispensing Method in UV NIL (UV NIL공정에서 액적의 양과 도포방법에 따른 기포형성 연구)

  • Lee, Ki Yeon;Kim, Kug Weon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4178-4184
    • /
    • 2013
  • Nanoimprint lithography (NIL) is an emerging technology enabling cost-effective and high-throughput nanofabrication. Recently, the major trends of NIL are high throughput and large area patterning. UV curable type NIL (UV NIL) can be performed at room temperature and low pressure. And one advantage of UV NIL is that it does not need vacuum, which greatly simplifies tool construction, so that vacuum oprated high-precision stages and a large vacuum chamber are no longer needed. However, one key issue in non-vacuum environment is air bubble formation problem. Namely, can the air bubbles be completely removed from the resist. In this paper, the air bubbles formation by the method of droplet application in UV NIL with non-vacuum environment are experimentally studied. The effects of the volume of droplet and the number of dispensing points on air bubble formation are investigated.

The effect of micro/nano-scale wafer deformation on UV-nanoimprint lithography using an elementwise patterned stamp (다중양각스탬프를 사용하는 UV 나노임프린트 리소그래피공정에서 웨이퍼 미소변형의 영향)

  • 정준호;심영석;최대근;김기돈;신영재;이응숙;손현기;방영매;이상찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1119-1122
    • /
    • 2004
  • In the UV-NIL process using an elementwise patterned stamp (EPS), which includes channels formed to separate each element with patterns, low-viscosity resin droplets with a nano-liter volume are dispensed on all elements of the EPS. Following pressing of the EPS, the EPS is illuminated with UV light to cure the resin; and then the EPS is separated from several thin patterned elements on a wafer. Experiments on UV-NIL were performed on an EVG620-NIL. 50 - 70 nm features of the EPS were successfully transferred to 4 in. wafers. Especially, the wafer deformation during imprint was analyzed using the finite element method (FEM) in order to study the effect of the wafer deformation on the UV-NIL using EPS.

  • PDF

The Development of Single-Step UV-NIL Tool Using Low Vacuum Environment and Additive Air Pressure (저진공 Single-step UV 나노임프린트 장치 개발)

  • Kim K.D.;Jeong J.H.;Lee E.S.;Bo H.J.;Shin H.S.;Choi W.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.155-156
    • /
    • 2006
  • UV-NIL is a promising technology for the fabrication of sub-100 nm features. Due to non-uniformity of the residual layer thickness (RLT) and a strong possibility of defects, many UV-NIL processes have been developed and some are commercially available at present, most are based on the 'step-and-repeat' nanoimprint technique, which employs a small-area stamp, much smaller than the substrate. This is mainly because, when a large-area stamp is used, it is difficult to obtain acceptable uniform residual layer thickness and/or to avoid defects such as air entrapment. As an attempt to enable UV_NIL with a large-area stamp for high throughput, we propose a new UV-NIL tool that is able to imprint 4 inch wafer in a low vacuum environment at a single step.

  • PDF

The effect of wafer deformation on UV-nanoimprint lithography using an EPS(elementwise patterned stamp) (EPS(elementwise patterned stamp)활용 UV나노임프린트 공정에서의 웨이퍼 미소변형의 영향)

  • Sim Young-suk;Jeong Jun-ho;Sohn Hyonkee;Lee Eung-sug;Fang Lingmei;Lee Sang-chan
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.1
    • /
    • pp.35-39
    • /
    • 2005
  • In the UV-NIL process using an elementwise patterned stamp (EPS), which includes channels formed to separate each element with patterns, low-viscosity resin droplets with a nano-liter volume are dispensed on all elements of the EPS. Following pressing of the EPS, the EPS is illuminated with UV-light to cure the resin; and then the EPS is separated from several thin patterned elements on a wafer. Experiments on UV-NIL were performed on an EVG620-NIL. 50 - 100nm features of the EPS with 3m channels were successfully transferred to 4 in. wafers. Especially, the wafer deformation during imprint was analyzed using the finite element method (FEM) in order to study the effect of the wafer deformation on the UV-NIL using EPS.

Design of the Dummy Block for Uniform Stamp Deformation in the UV Nanoimprint Lithography (UV 나노 임프린트 공정에서 스탬프 균일 변형을 위한 더미 블록 설계)

  • Kim, Nam-Woong;Kim, Kug-Weon;Chung, Tae-Eun;Sin, Hyo-Chol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.76-81
    • /
    • 2008
  • Nanoimprint lithography(NIL) is an emerging technology enabling cost-effective and high-throughput nanofabrication. Among NILs, significant efforts from both academia and industry have been put in UV NIL research and development because of its ability to pattern at room temperature and at low pressure. In UV NIL, there may be in-line set-up error of the stamp and the substrate. To compensate this error, the dummy blocks are put on the stamp and pressurized uniformly. Contact problems between the stamp and the photoresist layer on the substrate are often happened, which results in the non-uniform residual layer In this paper, the pressurization method on the dummy block is investigated by the finite element method. A new method is recommended and evaluated far the uniform stamp deformation.