• Title/Summary/Keyword: UV-B irradiation

Search Result 245, Processing Time 0.042 seconds

A STUDY OF THE MECHANISM OF IMPROVING ACID RESISTANCE OF BOVINE TOOTH ENAMEL AFTER PULSED Nd-YAG LASER IRRADIATION (펄스형 Nd-YAG 레이저 조사에 의한 법랑질 내산성 증가 기전에 관한 연구)

  • Lee, Young-Soon;Shon, Heung-Kyu
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.23 no.3
    • /
    • pp.640-658
    • /
    • 1996
  • The purpose of this study was to examine the mechanism of improving acid resistance of Nd-YAG laser irradiated tooth enamel and determine the most effective energy density for improving acid resistance. The bovine tooth enamel were lased with a pulsed Nd-YAG laser. The energy densities of exposed laser beam were varied from 10 to $70\;J/cm^2$. To investigate the degree of improving acid resistance by irradiation, all the samples were submerged to demineralize in 0.5 N $HClO_4$ solution for 1 minute. After 1 minute, 0.05 % $LaCl_3$ was added to the solution for interrupting the demineralization reaction. The amounts of dissolved calcium and phosphate in the solution were measured by using an atomic absorption spectrophotometer and the UV/VIS spectrophotometer, respectively. To examine the mechanism of improving acid resistance, X-ray diffraction analysis, infrared spectroscopy, and scanning electron microscopy were taken. The X-ray diffraction pattern of the samples were obtained in the $10^{\circ}{\sim}80^{\circ}2{\theta}$ range with $Cu-K{\alpha}$ radiation using M18HF(Mac Science Co.) with X-ray diffractometer operating at 40 KV and 300 mA. The infra-red spectra of the ground samples in 300 mg KBr pellets 10 mm diameter were obtained in the $4000cm^{-1}\;to\;400cm^{-1}$ range using JASCO 300E spectrophotometer. The scanning electron microscopy was carried out using JSM6400(JEOL Co.) with $500{\sim}2000$ times magnification. The results were as follow 1. The concentration of calcium dissolved from laser irradiated enamel with $50J/cm^2$ was significantly lesser than that of unlased control group (p<0.05) 2. From the result of the X-ray diffraction analysis, $\beta$-TCP, which increases acid solubility, was identified in lased enamel but the diffraction peaks of (002) and (004) became sharp with increasing energy density of laser irradiation. This means that the crystals in lased samples were grown through the c-axis and subsequently, the acid solubility of enamel decreased. 3. The a-axis parameter was slightly increased by laser irradiation, whereas the c-axis parameter was almost constant except for a little decrease at $50J/cm^2$. 4. In the infra-red spectra of lased enamels, phosphate bands ($600{\sim}500cm^{-1}$), B-carbonate bands (870, $1415{\sim}1455cm^{-1}$), and A-carbonate band ($1545cm^{-1}$) were observed. The amounts of phosphate bands and the B-carbonate bands were reduced, on the other hand, the amount of the A-carbonate band was increased by increase the energy density. 5. The SEM experiments reveal that the surface melting and recrystallization were appeared at $30J/cm^2$ and the cracks were observed at $70J/cm^2$. From above results, It may be suggested that the most effective energy density for improving acid resistance of tooth enamel with the irradiation of Nd-YAG laser was $50J/cm^2$. The mechanism of improving acid resistance were reduction of permeability due to surface melting and recrystallization of lased enamel and reduction of acid solubility of enamel due to decrease of carbonate content and growth of crystal.

  • PDF

Growth Patterns of Temperature-sensitive Mutants of Bacillus Thuringiensis (Bacillus thuringiensis 의 Temperature-sensitive Mutants 분리와 특성 연구)

  • Lee, Hyung-Hoan;Lee, Hoon-Ku
    • Microbiology and Biotechnology Letters
    • /
    • v.11 no.3
    • /
    • pp.233-239
    • /
    • 1983
  • Bacillus thuringiensis was mutagenized with UV light irradiation and nitrosoguanidine. Twenty-four tem perature-sensitive ts mutants were isolated at 42$^{\circ}C$ and classified into two groups by growth on nutrient agar at 42$^{\circ}C$. First is the lethal group, which did not grow at the nonpermissive temperature, the second is the reduced group whose growth was restricted from one-half to one-fourth, Thirteen ts mutants belong to the lethal group and eleven ts mutants belong to the reduced group. Auxotrophic mutant, A-N28 required five amino acids as growth factors, A-N65 also five amino acids, A-N92 seven, A-N115 four and A-N156 three. Bacillus thuringiensis wild type is resistant to penicillin, ampicillin, and cephalothin. The ts-Ul7l, A-N92 and A-Nl15 are sensitive to the three antibiotics. The ts -U601, -U603, -U604 and -Ul71 did not grow at the permissive temperature after temperature-shifting from 42$^{\circ}C$. Four auxotrophic mutants (A-N38, A-N65, A-N92 and A-Nl15) did not form spores in their cells.

  • PDF

Effects of Surface Characteristics of TiO2 Nanotublar Composite on Photocatalytic Activity (TiO2 복합 광촉매의 표면 특성과 광촉매 효율)

  • Lee, Jong-Ho;Youn, Jeong-Il;Kim, Young-Jig;Oh, Han-Jun
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.556-564
    • /
    • 2014
  • To synthesize a high-performance photocatalyst, N doped $TiO_2$ nanotubes deposited with Ag nanoparticles were synthesized, and surface characteristics, electrochemical behaviors, and photocatalytic activity were investigated. The $TiO_2$ nanotubular photocatalyst was fabricated by anodization; the Ag nanoparticles on the $TiO_2$ nanotubes were synthesized by a reduction reaction in $AgNO_3$ solution under UV irradiation. The XPS results of the N doped $TiO_2$ nanotubes showed that the incorporated nitrogen ions were located in interstitial sites of the $TiO_2$ crystal structure. The N doped titania nanotubes exhibited a high dye degradation rate, which is effectively attributable to the increase of visible light absorption due to interstitial nitrogen ions in the crystalline $TiO_2$ structure. Moreover, the precipitated Ag particles on the titania nanotubes led to a decrease in the rate of electron-hole recombination; the photocurrent of this electrode was higher than that of the pure titania electrode. From electrochemical and dye degradation results, the photocurrent and photocatalytic efficiency were found to have been significantly affected by N doping and the deposition of Ag particles.

Improved Biosurfactant Production by Bacillus subtilis SPB1 Mutant Obtained by Random Mutagenesis and Its Application in Enhanced Oil Recovery in a Sand System

  • Bouassida, Mouna;Ghazala, Imen;Ellouze-Chaabouni, Semia;Ghribi, Dhouha
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.95-104
    • /
    • 2018
  • Biosurfactants or microbial surfactants are surface-active biomolecules that are produced by a variety of microorganisms. Biodegradability and low toxicity have led to the intensification of scientific studies on a wide range of industrial applications for biosurfactants in the field of environmental bioremediation as well as the petroleum industry and enhanced oil recovery. However, the major issues in biosurfactant production are high production cost and low yield. Improving the bioindustrial production processes relies on many strategies, such as the use of cheap raw materials, the optimization of medium-culture conditions, and selecting hyperproducing strains. The present work aims to obtain a mutant with higher biosurfactant production through applying mutagenesis on Bacillus subtilis SPB1 using a combination of UV irradiation and nitrous acid treatment. Following mutagenesis and screening on blood agar and subsequent formation of halos, the mutated strains were examined for emulsifying activity of their culture broth. A mutant designated B. subtilis M2 was selected as it produced biosurfactant at twice higher concentration than the parent strain. The potential of this biosurfactant for industrial uses was shown by studying its stability to environmental stresses such as pH and temperature and its applicability in the oil recovery process. It was practically stable at high temperature and at a wide range of pH, and it recovered above 90% of motor oil adsorbed to a sand sample.

Determination of diphencyprone and its photo-degradation product incompounded preparations using HPLC

  • Cho, Chong Woon;Kim, Kyung Tae;Park, Miyeon;Kim, Jin Seog;Lee, Jinbok;Kang, Jong Seong
    • Analytical Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.179-184
    • /
    • 2018
  • Diphencyprone (DPCP) is frequently used as a compounded preparation in dermatology for the treatment of alopecia and recalcitrant warts based on the immune reaction of skin allergy. However, DPCP is a non-recognized agent in Pharmacopoeia, because there are no criteria or analytical method for quality control of its powder and formulation. DPCP is unstable under light irradiation because as it easily decomposes to diphenylacetylene (DPA). This study aims to develop a simultaneous HPLC analytical method for analyzing DPCP and DPA in the raw materials and compounded preparation. The method required a C18 column ($250{\times}4.6mm$, $5{\mu}m$) at $40^{\circ}C$ with a mobile phase of (A) 0.01 M phosphoric acid in water and (B) acetonitrile at UV 220 nm. DPA conversion to DPCP in the powder and compounded preparations was accelerated after light exposure for 60 min. In addition, this resulted in different patterns depending on the wavelength of light and the formulation. That is, DPCP in compounded preparation was more unstable than that in the powder. However, the DPCP formulation in amber bottles was observed to remain stable, although the measured concentrations of DPCP were somewhat different from the nominal concentration of the compounded preparations. The control of the exact concentration is required for effective disease treatment, depending on the state of the patient. In conclusion, these results will be useful for the recognition of DPCP in Pharmacopoeia and new DPCP formulation development to prevent photodecomposition.

BIOLOGICAL ACTIVITES OF PLANT LEAF EXTRACTS; AVAILABILITY OF STAR FRUIT LEAF EXTRACT AGAINST SKIN AGING

  • Yoshihito Kawashima;Zhou, Yan-Yang;Naoko Kishida;Nobuaki Ohto;Daisuke Araho;Yoko Ito;Toshimitsu Kambara;Zhou, Wan-Hua
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.645-658
    • /
    • 2003
  • We evaluated activities of various plant leaf extracts and found the availability against skin aging in the leaf extract of star fruit (Averrhoa carambola L), and developed Star Fruit Leaf Extract BG30 as an ingredient of cosmetics. Star Fruit Leaf Extract BG30 was found to show scavenging activities of reactive oxygen species and an inhibitory effect on the activity of matrix metalloproteinase-1. It showed increasing activity of type I collagen and recovery effect from damage of UV-B irradiation in human fibroblast. We performed the separation of the active principal from Star Fruit Leaf Extract BG30 to give isofurcatin 2"-Ο-$\alpha$-L-rhamnopyranoside, which showed increasing activity of type I collagen. To examine the anti-wrinkle effect of Star Fruit Leaf Extract BG30, seven volunteers applied a Star Fruit Leaf Extract BG30 1 % cream in double blind manner to one-side of the corner of their eye and the placebo cream to the opposite side. Clinical evaluation of wrinkling was performed every week for 5 weeks using a silicone rubber replica. A statistically significant improvement of Star Fruit Leaf Extract BG30-treated site was seen in decreased wrinkles. Star Fruit Leaf Extract BG30 results in clinically visible improvement in wrinkling when used topically for 5 weeks.

  • PDF

Study on the Preparation of TiO2 3D Nanostructure for Photocatalyst by Wet Chemical Process (습식화학공정에 의한 광촉매용 TiO2 3차원 나노구조체 제조 연구)

  • Lee, Duk-Hee;Park, Jae-Ryang;Lee, Chan-Gi;Park, Kyoung-Tae;Park, Kyung-Soo
    • Journal of Powder Materials
    • /
    • v.27 no.5
    • /
    • pp.381-387
    • /
    • 2020
  • In this work, TiO2 3D nanostructures (TF30) were prepared via a facile wet chemical process using ammonium hexafluorotitanate. The synthesized 3D TiO2 nanostructures exhibited well-defined crystalline and hierarchical structures assembled from TiO2 nanorods with different thicknesses and diameters, which comprised numerous small beads. Moreover, the maximum specific surface area of TiO2 3D nanostructures was observed to be 191 ㎡g-1, with concentration of F ions on the surface being 2 at%. The TiO2 3D nanostructures were tested as photocatalysts under UV irradiation using Rhodamine B solution in order to determine their photocatalytic performance. The TiO2 3D nanostructures showed a higher photocatalytic activity than that of the other TiO2 samples, which was likely associated with the combined effects of a high crystallinity, unique features of the hierarchical structure, a high specific surface area, and the advantage of adsorbing F ions.

Fabrication of Regenerated Fiber Bragg Grating Using Thermal Annealing (열처리 공정을 이용한 regenerated FBG의 제작)

  • Seo, Ji-Hee;Lee, Nam-Kwon;Lee, Seung-Hwan;Kim, Yu-Mi;Yu, Yun-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.124-129
    • /
    • 2013
  • In this paper, we manufactured the regenerated FBG by the thermal annealing of seed FBG based on UV irradiation. The writing conditions of regenerated FBGs were investigated in four types of optical fiber. FBGs written in $H_2$-free fiber were erased and not regenerated during the thermal annealing. FBG written in $H_2$ loaded Boron co-doped fiber was erased at the temperature of about $580^{\circ}C$ and regenerated about $590^{\circ}C$. However, the extinction of regenerated FBG started at the temperature over $900^{\circ}C$ and then FBG disappeared out. FBG written in $H_2$ loaded Ge high doped fiber was erased and regenerated around the temperature of $800^{\circ}C$ and maintained until the end of the thermal annealing. The reflection of the regenerated FBG was decreased about 12 dB and the center wavelength of the regenerated FBG was shifted about 0.7 nm compared with that of the seed FBG. The thermal characteristics of the regenerated FBG were analyzed by reheating from room temperature to $980^{\circ}C$. As results, the regenerated FBG had survived without a decrease of reflection and the thermal sensitivity was $15pm^{\circ}C$.

Evaluating the Catalytic Effects of Carbon Materials on the Photocatalytic Reduction and Oxidation Reactions of TiO2

  • Khan, Gulzar;Kim, Young Kwang;Choi, Sung Kyu;Han, Dong Suk;Abdel-Wahab, Ahmed;Park, Hyunwoong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1137-1144
    • /
    • 2013
  • $TiO_2$ composites with seven different carbon materials (activated carbons, graphite, carbon fibers, single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene oxides, and reduced graphene oxides) that are virgin or treated with nitric acid are prepared through an evaporation method. The photocatalytic activities of the as-prepared samples are evaluated in terms of $H_2$ production from aqueous methanol solution (photo-catalytic reduction: PCR) and degradation of aqueous pollutants (phenol, methylene blue, and rhodamine B) (photocatalytic oxidation: PCO) under AM 1.5-light irradiation. Despite varying effects depending on the kinds of carbon materials and their surface treatment, composites typically show enhanced PCR activity with maximum 50 times higher $H_2$ production as compared to bare $TiO_2$. Conversely, the carbon-induced synergy effects on PCO activities are insignificant for all three substrates. Colorimetric quantification of hydroxyl radicals supports the absence of carbon effects. However, platinum deposition on the binary composites displays the enhanced effect on both PCR and PCO reactions. These differing effects of carbon materials on PCR and PCO reactions of $TiO_2$ are discussed in terms of physicochemical properties of carbon materials, coupling states of $TiO_2$/carbon composites, interfacial charge transfers. Various surface characterizations of composites (UV-Vis diffuse reflectance, SEM, FTIR, surface area, electrical conductivity, and photoluminescence) are performed to gain insight on their photocatalytic redox behaviors.

Enhancement of 1,3-Dihydroxyacetone Production from Gluconobacter oxydans by Combined Mutagenesis

  • Lin, Xi;Liu, Sha;Xie, Guangrong;Chen, Jing;Li, Penghua;Chen, Jianhua
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1908-1917
    • /
    • 2016
  • Wild strain L-6 was subjected to combined mutagenesis, including UV irradiation, atmospheric and room temperature plasma, and ion beam implantation, to increase the yield of 1,3-dihydroxyacetone (DHA). With application of a high-throughput screening method, mutant Gluconobacter oxydans I-2-239 with a DHA productivity of 103.5 g/l in flask-shake fermentation was finally obtained with the starting glycerol concentration of 120 g/l, which was 115.7% higher than the wild strain. The cultivation time also decreased from 54 h to 36 h. Compared with the wild strain, a dramatic increase in enzyme activity was observed for the mutant strain, although the increase in biomass was limited. DNA and amino acid sequence alignment revealed 11 nucleotide substitutions and 10 amino acid substitutions between the sldAB of strains L-6 and I-2-239. Simulation of the 3-D structure and prediction of active site residues and PQQ binding site residues suggested that these mutations were mainly related to PQQ binding, which was speculated to be favorable for the catalyzing capacity of glycerol dehydrogenase. RT-qPCR assay indicated that the transcription levels of sldA and sldB in the mutant strain were respectively 4.8-fold and 5.4-fold higher than that in the wild strain, suggesting another possible reason for the increased DHA productivity of the mutant strain.