Browse > Article
http://dx.doi.org/10.4014/jmb.1604.04019

Enhancement of 1,3-Dihydroxyacetone Production from Gluconobacter oxydans by Combined Mutagenesis  

Lin, Xi (School of Life Science and Technology, China Pharmaceutical University)
Liu, Sha (School of Life Science and Technology, China Pharmaceutical University)
Xie, Guangrong (School of Life Science and Technology, China Pharmaceutical University)
Chen, Jing (School of Life Science and Technology, China Pharmaceutical University)
Li, Penghua (School of Life Science and Technology, China Pharmaceutical University)
Chen, Jianhua (School of Life Science and Technology, China Pharmaceutical University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.11, 2016 , pp. 1908-1917 More about this Journal
Abstract
Wild strain L-6 was subjected to combined mutagenesis, including UV irradiation, atmospheric and room temperature plasma, and ion beam implantation, to increase the yield of 1,3-dihydroxyacetone (DHA). With application of a high-throughput screening method, mutant Gluconobacter oxydans I-2-239 with a DHA productivity of 103.5 g/l in flask-shake fermentation was finally obtained with the starting glycerol concentration of 120 g/l, which was 115.7% higher than the wild strain. The cultivation time also decreased from 54 h to 36 h. Compared with the wild strain, a dramatic increase in enzyme activity was observed for the mutant strain, although the increase in biomass was limited. DNA and amino acid sequence alignment revealed 11 nucleotide substitutions and 10 amino acid substitutions between the sldAB of strains L-6 and I-2-239. Simulation of the 3-D structure and prediction of active site residues and PQQ binding site residues suggested that these mutations were mainly related to PQQ binding, which was speculated to be favorable for the catalyzing capacity of glycerol dehydrogenase. RT-qPCR assay indicated that the transcription levels of sldA and sldB in the mutant strain were respectively 4.8-fold and 5.4-fold higher than that in the wild strain, suggesting another possible reason for the increased DHA productivity of the mutant strain.
Keywords
1,3-Dihydroxyacetone; glycerol; bioconversion; fermentation; enzyme activity; combined mutagenesis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bicker M, Endres S, Ott L, Vogel H. 2005. Catalytical conversion of carbohydrates in subcritical water: a new chemical process for lactic acid production. J. Mol. Catal. A Chem. 239: 151-157.   DOI
2 Black CS, Nair GR. 2013. Bioconversion of glycerol to dihydroxyacetone by immobilized Gluconacetobacter xylinus cells. Int. J. Chem. Eng. Appl. 4: 310-314.
3 Ameyama M, Matsushita K, Ohno Y, Shinagawa E, Adachi O. 1981. Existence of a novel prosthetic group, PQQ, in membrane-bound, electron transport chain-linked, primary dehydrogenases of oxidative bacteria. FEBS Lett. 130: 179-183.   DOI
4 Ameyama M, Shinagawa E, Matsushita K, Adachi O. 1985. Solubilization, purification and properties of membranebound glycerol dehydrogenase from Gluconobacter industrius. Agric. Biol. Chem. 49: 1001-1010.
5 Brenner DJ, Krieg NR, Staley JT, Garrity GM. 2005. Genus VIII. Gluconacetobacter, pp. 72-73. In Brenner DJ, Krieg NR, Staley JT (eds.), Bergey's Manual of Sytematic Bacteriology, 2nd Ed. Springer Science+Business Media, New York.
6 Guo T, Tang Y, Xi YL, He AY, Sun BJ, Wu H, et al. 2011. Clostridium beijerinckii mutant obtained by atmospheric pressure glow discharge producing high proportions of butanol and solvent yields. Biotechnol. Lett. 33: 2379-2383.   DOI
7 Chen J, Chen JH, Zhou CL. 2008. HPLC method for determination of dihydroxyacetone and glycerol in fermentation broth and comparison with a visible spectrophotometric method to determine dihydroxyacetone. J. Chromatogr. Sci. 46: 912-916.   DOI
8 Enders D, Voith M, Lenzen A. 2005. The dihydroxyacetone unit - a versatile C(3) building block in organic synthesis. Angew. Chem. Int. Ed. Engl. 44: 1304-1325.   DOI
9 Gatgens C, Degner U, Bringer-Meyer S, Herrmann U. 2007. Biotransformation of glycerol to dihydroxyacetone by recombinant Gluconobacter oxydans DSM 2343. Appl. Microbiol. Biotechnol. 76: 553-559.   DOI
10 Hekmat D, Bauer R, Fricke J. 2003. Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans. Bioprocess Biosyst. Eng. 26: 109-116.   DOI
11 Lapenaite I, Kurtinaitiene B, Razumiene J, Laurinavicius V, Marcinkeviciene L, BachmatovaI, et al. 2005. Properties and analytical application of PQQ-dependent glycerol dehydrogenase from Gluconobacter sp. 33. Anal. Chim. Acta 549: 140-150.   DOI
12 Hekmat D, Bauer R, Neff V. 2007. Optimization of the microbial synthesis of dihydroxyacetone in a semi-continuous repeated-fed-batch process by in situ immobilization of Gluconobacter oxydans. Process Biochem. 42: 71-76.   DOI
13 Hoshino T, Sugisawa T, Shinjoh M, Tomiyama N, Miyazaki T. 2003. Membrane-bound D-sorbitol dehydrogenase of Gluconobacter suboxydans IFO 3255 - enzymatic and genetic characterization. Biochim. Biophys. Acta 1647: 278-288.   DOI
14 Hu ZC, Liu ZQ, Xu JM, Zheng YG, Shen YC. 2012. Improvement of 1,3-dihydroxyacetone production from Gluconobacter oxydans by ion beam implantation. Prep. Biochem. Biotechnol. 42: 15-28.   DOI
15 Hu ZC, Zheng YG. 2009. A high throughput screening method for 1,3-dihydroxyacetone-producing bacterium by cultivation in a 96-well microtiter plate. J. Rapid Methods Autom. Microbiol. 17: 233-241.   DOI
16 Hu ZC, Zheng YG. 2011. Enhancement of 1,3-dihydroxyacetone production by a UV-induced mutant of Gluconobacter oxydans with DO control strategy. Appl. Biochem. Biotechnol. 165: 1152- 1160.   DOI
17 Li G, Li HP, Wang LY, Wang S, Zhao HX, Sun WT, et al. 2008. Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium. Appl. Phys. Lett. 92: 221504.   DOI
18 Liu RM, Liang LY, Ma JF, Ren XY, Jiang M, Chen KQ, et al. 2013. An engineering Escherichia coli mutant with high succinic acid production in the defined medium obtained by the atmospheric and room temperature plasma. Process Biochem. 48: 1603-1609.   DOI
19 Ma L, Lu W, Xia Z, Wen J. 2010. Enhancement of dihydroxyacetone production by a mutant of Gluconobacter oxydans. Biochem. Eng. J. 49: 61-67.   DOI
20 Liu YP, Sun Y, Tan C, Li H, Zheng XJ, Jin KQ, Wang G. 2013. Efficient production of dihydroxyacetone from biodieselderived crude glycerol by newly isolated Gluconobacter frateurii. Bioresour. Technol. 142: 384-389.   DOI
21 Miyazaki T, Tomiyama N, Shinjoh M, Hoshino T. 2002. Molecular cloning and functional expression of D-sorbitol dehydrogenase from Gluconobacter suboxydans IFO3255, which requires pyrroloquinoline quinone and hydrophobic protein SldB for activity development in E. coli. Biosci. Biotechnol. Biochem. 66: 262-270.   DOI
22 Nabe K, Izuo N, Yamada S, Chibata I. 1979. Conversion of glycerol to dihydroxyacetone by immobilized whole cells of Acetobacter xylinum. Appl. Environ. Microbiol. 38: 1056-1060.
23 Nie GJ, Yang XR, Liu H, Wang Li, Gong GH, Jin W, Zheng ZM. 2013. $N^+$ ion beam implantation of tannase-producing and Aspergillus niger and optimization of its process parameters under submerged fermentation. Ann. Microbiol. 63: 279-287.   DOI
24 Raska J, Skopal F, Komers K, Machek J. 2007. Kinetics of glycerol biotransformation to dihydroxyacetone by immobilized Gluconobacter oxydans and effect of reaction conditions. Collect. Czech. Chem. Commun. 72: 1269-1283.   DOI
25 Roy A, Kucukural A, Zhang Y. 2010. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5: 725-738.   DOI
26 Ruch FE, Lin EC. 1975. Independent constitutive expression of the aerobic and anaerobic pathways of glycerol catabolism in Klebsiella aerogenes. J. Bacteriol. 124: 348-352.
27 Silva GPD, Mack M, Contiero J. 2009. Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 27: 30-39.   DOI
28 Wang Q, Feng LR, Wei L, Li HG, Wang L, Zhou Y. 2014. Mutation breeding of lycopene-producing strain Blakeslea trispora by a novel atmospheric and room temperature plasma (ARTP). Appl. Biochem. Biotechnol. 174: 452-460.   DOI
29 Toyama H, Chen ZW, Fukumoto M, Adachi O, Matsushita K, Mathews FS. 2005. Molecular cloning and structural analysis of quinohemoprotein alcohol dehydrogenase ADHIIG from Pseudomonas putida HK5. J. Mol. Biol. 352: 91-104.   DOI
30 Wang LY, Huang ZL, Li G, Zhao HX, Xing XH, Sun WT, et al. 2009. Novel mutation breeding method for Streptomyces avermitilis using an atmospheric pressure glow discharge plasma. J. Appl. Microbiol. 108: 851-858.
31 Xu S, Wang X, Du G, Zhou J, Chen J. 2014. Enhanced production of L-sorbose from D-sorbitol by improving the mRNA abundance of sorbitol dehydrogenase in Gluconobacter oxydans WSH-003. Microb. Cell Fact. 13: 146.   DOI
32 Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. 2014. The I-TASSER Suite: protein structure and function prediction. Nat. Methods 12: 7-8.   DOI
33 Yang J, Zhang Y. 2015. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res. 43: 174-181.
34 Yang W, Zhou Y, Zhao ZK. 2013. Production of dihydroxyacetone from glycerol by engineered Escherichia coli cells co-expressing gldA and nox genes. Afr. J. Biotechnol. 12: 4387-4392.   DOI
35 Zong H, Zhan Y, Li X, Peng L, Feng F, Li D. 2012. A new mutation breeding method for Streptomyces albulus by an atmospheric and room temperature plasma. Afr. J. Microbiol. Res. 6: 3154-3158.