Browse > Article
http://dx.doi.org/10.4014/jmb.1701.01033

Improved Biosurfactant Production by Bacillus subtilis SPB1 Mutant Obtained by Random Mutagenesis and Its Application in Enhanced Oil Recovery in a Sand System  

Bouassida, Mouna (Unite Enzymes et Bioconversion, Ecole Nationale d'Ingenieurs de Sfax, Universite de Sfax)
Ghazala, Imen (Laboratoire d'amelioration des plantes et valorisation des agroressources, Ecole Nationale d'Ingenieurs de Sfax, Universite de Sfax)
Ellouze-Chaabouni, Semia (Unite Enzymes et Bioconversion, Ecole Nationale d'Ingenieurs de Sfax, Universite de Sfax)
Ghribi, Dhouha (Unite Enzymes et Bioconversion, Ecole Nationale d'Ingenieurs de Sfax, Universite de Sfax)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.1, 2018 , pp. 95-104 More about this Journal
Abstract
Biosurfactants or microbial surfactants are surface-active biomolecules that are produced by a variety of microorganisms. Biodegradability and low toxicity have led to the intensification of scientific studies on a wide range of industrial applications for biosurfactants in the field of environmental bioremediation as well as the petroleum industry and enhanced oil recovery. However, the major issues in biosurfactant production are high production cost and low yield. Improving the bioindustrial production processes relies on many strategies, such as the use of cheap raw materials, the optimization of medium-culture conditions, and selecting hyperproducing strains. The present work aims to obtain a mutant with higher biosurfactant production through applying mutagenesis on Bacillus subtilis SPB1 using a combination of UV irradiation and nitrous acid treatment. Following mutagenesis and screening on blood agar and subsequent formation of halos, the mutated strains were examined for emulsifying activity of their culture broth. A mutant designated B. subtilis M2 was selected as it produced biosurfactant at twice higher concentration than the parent strain. The potential of this biosurfactant for industrial uses was shown by studying its stability to environmental stresses such as pH and temperature and its applicability in the oil recovery process. It was practically stable at high temperature and at a wide range of pH, and it recovered above 90% of motor oil adsorbed to a sand sample.
Keywords
Random mutagenesis; biosurfactant; Bacillus subtilis; fermentation; oil recovery;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Sekar S, Sivaprakasam S, Mahadevan S. 2009. Investigations on ultraviolet light and nitrous acid induced mutations of halotolerant bacterial strains for the treatment of tannery soak liquor. Int. Biodeterior. Biodegradation 63: 176-181.   DOI
2 Dong Y, Lin H, Wang H, Mo X, Fu K, Wen H. 2011. Effects of ultraviolet irradiation on bacteria mutation and bioleaching of low-grade copper tailings. Minerals Eng. 24: 870-875.   DOI
3 Chen BM, Xu X P, H ou Z G, L i ZQ, Ruan WB. 2011. Identification and mutagenesis of a new isolated strain Bacillus sp B26 for producing (R)-${\alpha}$-hydroxyphenylacetic acid. Chin. J. Chem. Eng. 19: 636-643   DOI
4 Yang Y, Zhang S, Xu AL, Zou LH, Li L, Qiu GZ. 2010. UVinduced mutagenesis and bioleaching of Acidiphilium cryptum and Acidithiobacillus ferrooxidans. J. Cent. South Univ. 41: 393-399.
5 Queener SW, Lively DH. 1986. Screening and selection for strain improvement, pp. 155-169. In Demain AL, Solomon MA (eds.), Manual of Industrial Microbiology and Biotechnology. American Society for Microbiology, Washington, DC.
6 Azzouz H, Daoud F, Benfarhat-Touzri D, Tounsi S. 2014. Selection and characterization of Bacillus thuringiensis mutants over-producing d-endotoxins. J. Stored Prod. Res. 59: 82-87.   DOI
7 Kim HS, Cote JC, Frechette S, Chung YS. 1994. Isolation and characterisation of mutants of Bacillus thuringiensis. J. Appl. Bacteriol. 76: 234-239.   DOI
8 Mulligan CN, Cooper DG, Neufeld RJ. 1984. Selection of microbes producing biosurfactants in media without hydrocarbons. J. Ferment. Technol. 62: 311-314.
9 Mulligan CN, Chow TYK, Gibbs BF. 1989. Enhanced biosurfactant production by a mutant Bacillus subtilis strain. Appl. Microbiol. Biotechnol. 31: 486-489.
10 Tabatabaee A, Mazaheri AM, Noohi AA, Sajadian VA. 2005. Isolation of biosurfactant producing bacteria from oil reservoirs. Iranian J. Environ. Health Sci. Eng. 2: 6-12.
11 Abouseouda M, Yatagheneb A, Amranec A, Maachib R. 2010. Effect of pH and salinity on the emulsifying capacity and naphthalene solubility of a biosurfactant produced by Pseudomonas fluorescens. J. Hazard. Mater. 180: 131-136.   DOI
12 Tahzibi A, Kamal F, Mazaheri AM. 2004. Improved production of rhamnolipids by a Pseudomonas aeruginosa mutant. Iran. Biomed. J. 8: 25-31.
13 Khopade A, Biao R, Liu X, Mahadik K, Zhang L, Kokare C. 2012. Production and stability studies of the biosurfactant isolated from Nocardiopsis sp. Desalination 285: 198-204.   DOI
14 Afsharmanesh H, Ahmadzadeh M, Majdabadi A, Motamedi F, Behboudi K, Javan-Nikkhah M. 2013. Enhancement of biosurfactants and biofilm production after gamma irradiationinduced mutagenesis of Bacillus subtilis UTB1, a biocontrol agent of Aspergillus flavus. Arch. Phytopathol. Plant. Prot. 46: 1874-1884.   DOI
15 Ghojavand H, Vahabzadeh F, Roayaei E, Shahraki AK. 2008. Production and properties of a biosurfactant obtained from a member of the Bacillus subtilis group (PTCC 1696). J. Colloid Interface Sci. 324: 172-176.   DOI
16 Lin SC, Lin KG, Lo CC, Lin YM. 1998. Enhanced biosurfactant production by a Bacillus licheniformis mutant. Enzyme Microb. Technol. 23: 267-273.   DOI
17 Beggs CB. 2002. A quantitative method for evaluating the photoreactivation of ultraviolet damaged microorganisms. Photochem. Photobiol. Sci. 6: 431-437.
18 Pag U, Oedenkoven M, Papo N, Oren Z, Shai Y, Sahl HG. 2004. In vitro activity and mode of action of diastereomeric antimicrobial peptides against bacterial clinical isolates. J. Antimicrob. Chemother. 53: 230-239.
19 Carrillo PG, Mardaraz C, Pitta-Alvarez SJ, Giulietti AM. 1996. Isolation and selection of biosurfactant-producing bacteria. World J. Microbiol. Biotechnol. 12: 82-84.   DOI
20 Makkar RS, Cameotra SS. 1997. Biosurfactant production by a thermophilic Bacillus subtilis strain. J. Ind. Microbiol. Biotechnol. 18: 37-42.
21 Toren A, Navon-Venezia S, Ron EZ, Rosenberg E. 2001. Emulsifying activities of purified alasan proteins from Acinetobacter radioresistens KA53. Appl. Environ. Microbiol. 67: 1102-1106.   DOI
22 Plaza GA, Zjawiony I, Banat I. 2006. Use of different methods for detection of thermophilic biosurfactant-producing bacteria from hydrocarbon-contaminated bioremediated soils. J. Pet. Sci. Eng. 50: 71-77.   DOI
23 Maneerat S, Phetrong K. 2007. Isolation of biosurfactantproducing marine bacteria and characteristics of selected biosurfactant. Songklanakarin J. Sci. Technol. 29: 781-791.
24 Chen CY, Baker SC, Darton RC. 2007. The application of a high throughput analysis method for the screening of potential biosurfactants from natural sources. J. Microbiol. Methods 70: 503-510.   DOI
25 Gong G, Zheng Z, Chen H, Yuan C, Wang P, Yao L, et al. 2009. Enhanced production of surfactin by Bacillus subtilis E8 mutant obtained by ion beam implantation. Food Technol. Biotechnol. 47: 27-31.
26 Ghribi D, Zouari N, Jaoua S. 2004. Improvement of bioinsecticides production through mutagenesis of Bacillus thuringiensis by UV and nitrous acid affecting metabolic pathways and/or delta-endotoxin synthesis. J. Appl. Microbiol. 97: 338-346.
27 Pereira JFB, Gudina EJ, Costa R, Vitorino R, Teixeira JA, Coutinho JAP, et al. 2013. Optimization and characterization of biosurfactant production by Bacillus subtilis isolates towards microbial enhanced oil recovery applications. Fuel 111: 259-268.
28 Banat IM. 1995. Characterization of biosurfactants and their use in pollution removal - state of the art. Acta Biotechnol. 15: 251-267.   DOI
29 Mukherjee S, Das P, Sen R. 2006. Towards commercial production of microbial surfactants. Trends Biotechnol. 24: 509-515.   DOI
30 Stanbury PF, Whitaker A, Hall SJ. 1995. Fermentation Economics in Principles of Fermentation Technology, pp. 331-341. 2nd Ed. Pergamon Press, Oxford.
31 Volff JN, Vandewiele D, Simonet JM, Decaris B. 1993. Ultraviolet light, mitomycin C and nitrous acid induce genetic instability in Streptomyces ambofaciens ATCC23877. Mutat. Res. 287: 141-156.
32 Vahed M, Motalebi E, Rigi G, Noghabi KA, Reza Soudi M, Sadeghi M, et al. 2013. Improving the chitinolytic activity of Bacillus pumilus SG2 by random mutagenesis. J. Microbiol. Biotechnol. 23: 1519-1528   DOI
33 Ghribi D, Abdelkefi-Mesrati L, Mnif I, Kammoun R, Ayadi I, Saadaoui I, et al. 2012. Investigation of antimicrobial activity and statistical optimization of Bacillus subtilis SPB1 biosurfactant production in solid-state fermentation. J. Biomed. Biotechnol. 2012: 373682.
34 Mnif I, Campistany GA, Leon CJ, Hammami I, Triki MA, Manresa A, et al. 2016. Purification and identification of Bacillus subtilis SPB1 lipopeptide biosurfactant exhibiting antifugal activity against Rhizoctonia bataticola and Rhizoctonia solani. Environ. Sci. Pollut. Res. 23: 6690-6699.   DOI
35 Varadavenkatesan T, Murty VR. 2013. Production of a lipopeptide biosurfactant by a novel Bacillus sp and its applicability to enhanced oil recovery. Microbiology 2013: 621519.
36 Lotfabad T, Abassi H, Ahmadkhaniha R, Roostaazad R, Masoomi F, Zahiri H, et al. 2010. Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: enhancement of di-rhamnolipid proportion using gamma irradiation. Colloids Surf. B Biointerfaces. 81: 397-405.   DOI
37 Yoneda T, Miyota Y, Furuya K, Tsuzuki T. 2006. Production process of surfactin. US Patents No. 7011969.
38 Rodrigues L, Banat MB, Teixeira J, Oliveira R. 2006. Biosurfactants: potential applications in medicine. J. Antimicrob. Chemother. 57: 609-618   DOI
39 Aparna A, Srinikethan G, Smitha H. 2012. Production and characterization of biosurfactant produced by a novel Pseudomonas sp. 2B. Colloids Surf. B Biointerfaces 95: 23-29.   DOI
40 Ben Ayed H, Jridi M, Maalej H, Nasri M, Hmidet N. 2014. Characterization and stability of biosurfactant produced by Bacillus mojavensis A21 and its application in enhancing solubility of hydrocarbon. J. Chem. Technol. 89: 1007-1014.
41 Persson A, Osterberg E, Dostalek M. 1988. Biosurfactant production by Pseudomonas fluorescens 378: growth and product characteristics. Appl. Microbiol. Biotechnol. 29: 1-4.   DOI
42 Wang G, Ji G, Tian J, Zhang H, Dong H, Yu L. 2011. Functional characterization of a biosurfactant-producing thermo-tolerant bacteria isolated from an oil reservoir. Pet. Sci. 8: 353-356.   DOI
43 Sarubbo LA, De Luna JMG, De Campos-Takaki M. 2006. Production and stability studies of the bioemulsifier obtained from a new strain of Candida glabrata UCP 1002. Electron. J. Biotechnol. 9: 400-406.
44 Pate RM, Desai AJ. 1997. Surface active properties of rhamnolipids from Pseudomonas aeruginasa G53. Basic Microbiol. 37: 281-286.   DOI
45 Ghribi D, Chaabouni ES. 2011. Enhancement of Bacillus subtilis lipopeptide biosurfactants production through optimization of medium composition and adequate control of aeration. Biotechnol. Res. Int. 2011: 653654.
46 Youssef NH, Duncana KE, Naglea DP, Savagea KN, Knappb RM, McInerney MJ. 2004. Comparison of methods to detect biosurfactant production by diverse microorganisms. J. Microbiol. Methods 56: 339-347.   DOI
47 Carrera P, Cosmina P, Grandi G. 1993. Method of producing surfactin with the use of mutant of Bacillus subtilis. US Patents No. 5227294.
48 Mnif I, Sahnoun R, Chaabouni SE, Ghribi D. 2013. Evaluation of B subtilis SPB1 biosurfactants' potency for diesel-contaminated soil washing: optimization of oil desorption using Taguchi design. Environ. Sci. Pollut. Res. Int. 21: 851-861.
49 Luna JM, Rufino RD, Sarubbo L, Takaki GC. 2013. Characterisation, surface properties and biological activity of a biosurfactant produced from industrial waste by Candida sphaerica UCP0995 for application in the petroleum industry. Colloids Surf. B Biointerfaces 102: 202-209.   DOI
50 Luna JM, Sarubbo LA, Campos-Takaki GM. 2009. A new biosurfactant produced by Candida glabrata UCP1002: characteristics of stability and application in oil recovery. Braz. Arch. Biol. Technol. 52: 785-793.   DOI
51 Sobrinho HBS, Rufino RD, Luna JM, Salgueiro AA, Campos-Takaki GM, Leite LFC, et al. 2008. Utilization of two agroindustrial by-products for the production of a surfactant by Candida sphaerica UCP0995. Process Biochem. 43: 912-917.   DOI
52 Chandankere R, Yao J, Cai M, Masakorala K, Jain AK, Choi MM. 2014. Properties and characterization of biosurfactant in crude oil biodegradation by bacterium Bacillus methylotrophicus USTBa. Fuel 122: 140-148.   DOI
53 Bezza FA, Chirwa EMN. 2015. Production and applications of lipopeptide biosurfactant for bioremediation and oil recovery by Bacillus subtilis CN2. Biochem. Eng. J. 101: 168-178.   DOI
54 Mulligan CN, Yong RN, Gibbs BF. 2001. Surfactant-enhanced remediation of contaminated soil: a review. Eng. Geol. 60: 371-380.   DOI
55 Tiquia SM, Tam NFY, Hodgkiss IJ. 1996. Effects of composting on phytotoxicity of spent pig-manure sawdust litter. Environ. Pollut. 93: 249-256.   DOI
56 Silva SN, Farias CB, Rufino RD, Luna JM, Sarubbo LA. 2010. Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992. Colloids Surf. B Biointerfaces 79: 174-183.   DOI
57 Zhang J, Xue Q, Gao H, Lai H, Wang P. 2016. Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery. Microb. Cell Fact. 15: 168.   DOI