• 제목/요약/키워드: UV stability

검색결과 555건 처리시간 0.025초

Investigations on the effects of mouthrinses on the colour stability and surface roughness of different dental bioceramics

  • Soygun, Koray;Varol, Osman;Ozer, Ali;Bolayir, Giray
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권3호
    • /
    • pp.200-207
    • /
    • 2017
  • PURPOSE. In this study, three bioceramic materials, [IPS Empress CAD (Ivoclar), IPS e.max CAD (Ivoclar), and Lava Ultimate CAD (3M ESPE)] were treated with three commercial mouthrinses [Listerine, Tantum Verde, and Klorhex]; and changes in colour reflectance and surface roughness values were then quantitatively assessed. MATERIALS AND METHODS. One hundred and twenty ceramic samples, with dimensions of $2{\times}12{\times}14mm$, were prepared and divided into nine sample groups, except three control samples. The samples were immersed in the mouthrinse solutions for 120 hrs, and changes in colour reflectance and surface roughness values were measured by UV light spectrophotometry (Vita Easyshade; VITA Zahnfabrik) and by profilometer device (MitutoyoSurftest SJ-301), respectively. The change of surface roughness was inspected by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). RESULTS. There was a positive correlation between the ${\Delta}E$ and increase in the surface roughness. Two of the ceramic materials, IPS Empress and Lava Ultimate, were affected significantly by the treatment of the mouthrinse solutions (P<.05). The most affecting solution was Tantum Verde and the most affected material was Lava Ultimate. As expected, the most resistant material to ${\Delta}E$ and chemical corrosion was IPS e max CAD among the materials used. CONCLUSION. This work implied that mouthrinse with lower alcohol content had less deteriorating effect on colour and on the surface morphology of the bioceramic materials.

Improved Biosurfactant Production by Bacillus subtilis SPB1 Mutant Obtained by Random Mutagenesis and Its Application in Enhanced Oil Recovery in a Sand System

  • Bouassida, Mouna;Ghazala, Imen;Ellouze-Chaabouni, Semia;Ghribi, Dhouha
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권1호
    • /
    • pp.95-104
    • /
    • 2018
  • Biosurfactants or microbial surfactants are surface-active biomolecules that are produced by a variety of microorganisms. Biodegradability and low toxicity have led to the intensification of scientific studies on a wide range of industrial applications for biosurfactants in the field of environmental bioremediation as well as the petroleum industry and enhanced oil recovery. However, the major issues in biosurfactant production are high production cost and low yield. Improving the bioindustrial production processes relies on many strategies, such as the use of cheap raw materials, the optimization of medium-culture conditions, and selecting hyperproducing strains. The present work aims to obtain a mutant with higher biosurfactant production through applying mutagenesis on Bacillus subtilis SPB1 using a combination of UV irradiation and nitrous acid treatment. Following mutagenesis and screening on blood agar and subsequent formation of halos, the mutated strains were examined for emulsifying activity of their culture broth. A mutant designated B. subtilis M2 was selected as it produced biosurfactant at twice higher concentration than the parent strain. The potential of this biosurfactant for industrial uses was shown by studying its stability to environmental stresses such as pH and temperature and its applicability in the oil recovery process. It was practically stable at high temperature and at a wide range of pH, and it recovered above 90% of motor oil adsorbed to a sand sample.

Amine functionalized plasma polymerized PEG film: Elimination of non-specific binding for biosensing

  • Park, Jisoo;Kim, Youngmi;Jung, Donggeun;Kim, Young-Pil;Lee, Tae Geol
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.378.2-378.2
    • /
    • 2016
  • Biosensors currently suffer from severe non-specific adsorption of proteins, which causes false positive errors in detection through overestimation of the affinity value. Overcoming this technical issue motivates our research. Polyethylene glycol (PEG) is well known for its ability to reduce the adsorption of biomolecules; hence, it is widely used in various areas of medicine and other biological fields. Likewise, amine functionalized surfaces are widely used for biochemical analysis, drug delivery, medical diagnostics and high throughput screening such as biochips. As a result, many coating techniques have been introduced, one of which is plasma polymerization - a powerful coating method due to its uniformity, homogeneity, mechanical and chemical stability, and excellent adhesion to any substrate. In our previous works, we successfully fabricated plasmapolymerized PEG (PP-PEG) films [1] and amine functionalized films [2] using the plasma enhanced chemical vapor deposition (PECVD) technique. In this research, an amine functionalized PP-PEG film was fabricated by using the plasma co-polymerization technique with PEG 200 and ethylenediamine (EDA) as co-precursors. A biocompatible amine functionalized film was surface characterized by X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). The density of the surface amine functional groups was carried out by quantitative analysis using UV-visible spectroscopy. We found through surface plasmon resonance (SPR) analysis that non-specific protein adsorption was drastically reduced on amine functionalized PP-PEG films. Our functionalized PP-PEG films show considerable potential for biotechnological applications such as biosensors.

  • PDF

Structural, Electrical and Optical Properties of $HfO_2$ Films for Gate Dielectric Material of TTFTs

  • 이원용;김지홍;노지형;문병무;구상모
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.331-331
    • /
    • 2009
  • Hafnium oxide ($HfO_2$) attracted by one of the potential candidates for the replacement of si-based oxides. For applications of the high-k gate dielectric material, high thermodynamic stability and low interface-trap density are required. Furthermore, the amorphous film structure would be more effective to reduce the leakage current. To search the gate oxide materials, metal-insulator-metal (MIM) capacitors was fabricated by pulsed laser deposition (PLD) on indium tin oxide (ITO) coated glass with different oxygen pressures (30 and 50 mTorr) at room temperature, and they were deposited by Au/Ti metal as the top electrode patterned by conventional photolithography with an area of $3.14\times10^{-4}\;cm^2$. The results of XRD patterns indicate that all films have amorphous phase. Field emission scanning electron microscopy (FE-SEM) images show that the thickness of the $HfO_2$ films is typical 50 nm, and the grain size of the $HfO_2$ films increases as the oxygen pressure increases. The capacitance and leakage current of films were measured by a Agilent 4284A LCR meter and Keithley 4200 semiconductor parameter analyzer, respectively. Capacitance-voltage characteristics show that the capacitance at 1 MHz are 150 and 58 nF, and leakage current density of films indicate $7.8\times10^{-4}$ and $1.6\times10^{-3}\;A/cm^2$ grown at 30 and 50 mTorr, respectively. The optical properties of the $HfO_2$ films were demonstrated by UV-VIS spectrophotometer (Scinco, S-3100) having the wavelength from 190 to 900 nm. Because films show high transmittance (around 85 %), they are suitable as transparent devices.

  • PDF

스틸렌-아크릴산계 공중합체의 금속착물 형성에 관한 연구 (Studies on Metal Complex Formation of Poly (styrene-co-Acrylic acid))

  • 김공수;김수종;조석형;전용철
    • 공업화학
    • /
    • 제2권1호
    • /
    • pp.70-76
    • /
    • 1991
  • 수용성 poly(sulfonated styrene-co-acrylic acid)를 합성하여 Cu(II)이온과의 착물형성에 관한 연구를 수행하였다. poly(sulfonated styrene-co-acrylic acid)-Cu(II)착물의 생성반응에 있어서 pH 변화에 따른 UV-Vis. 흡수 스펙트라 및 점도 특성을 시험하여 착물형성조건을 검토하였다. 또한, poly(sulfonated styrene-co-acrylic acid)-Cu(II) 착물의 생성상수와 안정도상수를 Bjerrum 방법으로 구하였고 Ringbom 방법으로 착물생성 엔탈피, 자유에너지 및 엔트로피 변화 등 열역학적 특성값을 구하였다.

  • PDF

조선왕조실록 밀랍본 복원기술 연구(제3보) -습열열화처리를 이용한 복원용 한지의 내구성 평가- (The Study of Restoration Technique of Wax-Treated Volume for the Annals of the Joseon Dynasty (III) -Evaluation of Durability of Korean Traditional Paper using Moist-heat Aging Treatment-)

  • 정선화;정선영;서진호;정소영
    • 펄프종이기술
    • /
    • 제45권5호
    • /
    • pp.49-55
    • /
    • 2013
  • To explore the paper materials for restoration of the Annals of the Joseon Dyansty, durability of the three type of the traditional Korean Papers were estimated in this study, through moist heat artificial aging test. Three types(D, F, and G) which showed the best preservation performance in dry heat and UV treatment in the previous study were selected and artificial accelerated aging treatment with moist-heat process was conducted; the viscosity change rate was D>G>F; folding endurance G>D>F; $L^*$ value F>D>G; $a^*$ and $b^*$ change rate D>G>F; brightness decrease rate D>G>F, suggesting paper F showed the least change rate in physical/optical properties. Also the CLSM image observation showed fair coherence among fibers and confirmed paper mulberry. And in FDI extraction from each sample, paper F showed the highest value. Overall, paper F (traditional glossy paper) showed the highest stability against thermal treatment. It confirms that paper F is suitable as restoration paper for tributary remains including the annals of the Joseon Dynasty for its steady strength/viscosity decrease rate and color change rate.

Photocatalytic Activity of Hierarchical N doped TiO2 Nanostructures

  • Naik, Brundabana;Kim, Sun Mi;Jung, Chan Ho;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.669-669
    • /
    • 2013
  • Hierarchical N doped TiO2 nanostructured catalyst with micro, meso and macro porosity have been synthesized by a facile self-formation route using ammonia and titanium isopropoxide precursor. The samples were calcined in different calcination temperature ranging from $300^{\circ}C$ to $800^{\circ}C$ at slow heating rate ($5^{\circ}C$/min) and designated as NHPT-300 to NHPT-800. $TiO_2$ nanostructured catalyst have been characterized by physico-chemical and spectroscopy methods to explore the structural, electronic and optical properties. UV-Vis diffuse reflectance spectra confirmed the red shift and band gap narrowing due to the doping of N species in TiO2 nanoporous catalyst. Hierarchical macro porosity with fibrous channel patterning was observed (confirmed from FESEM) and well preserved even after calcination at $800^{\circ}C$, indicating the thermal stability. BET results showed that micro and mesoporosity was lost after $500^{\circ}C$ calcination. The photocatalytic activity has been evaluated for methanol oxidation to formaldehyde in visible light. The enhanced photocatalytic activity is attributed to combined synergetic effect of N doping for visible light absorption, micro and mesoporosity for increase of effective surface area and light harvestation, and hierarchical macroporous fibrous structure for multiple reflection and effective charge transfer.

  • PDF

Polymeric nanoparticles as dual-imaging probes for cancer management

  • Menon, Jyothi U.;Jadeja, Parth;Tambe, Pranjali;Thakore, Dheeraj;Zhang, Shanrong;Takahashi, Masaya;Xie, Zhiwei;Yang, Jian;Nguyen, Kytai T.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제3권3호
    • /
    • pp.129-140
    • /
    • 2016
  • This article reports the development of biodegradable photoluminescent polymer (BPLP)-based nanoparticles (NPs) incorporating either magnetic nanoparticles (BPLP-MNPs) or gadopentate dimeglumine (BPLP-Gd NPs), for cancer diagnosis and treatment. The aim of the study is to compare these nanoparticles in terms of their surface properties, fluorescence intensities, MR imaging capabilities, and in vitro characteristics to choose the most promising dual-imaging nanoprobe. Results indicate that BPLP-MNPs and BPLP-Gd NPs had a size of $195{\pm}43nm$ and $161{\pm}55nm$, respectively and showed good stability in DI water and 10% serum for 5 days. BPLP-Gd NPs showed similar fluorescence as the original BPLP materials under UV light, whereas BPLP-MNPs showed comparatively less fluorescence. VSM and MRI confirmed that the NPs retained their magnetic properties following encapsulation within BPLP. Further, in vitro studies using HPV-7 immortalized prostate epithelial cells and human dermal fibroblasts (HDFs) showed > 70% cell viability up to $100{\mu}g/ml$ NP concentration. Dose-dependent uptake of both types of NPs by PC3 and LNCaP prostate cancer cells was also observed. Thus, our results indicate that BPLP-Gd NPs would be more appropriate for use as a dual-imaging probe as the contrast agent does not mask the fluorescence of the polymer. Future studies would involve in vivo imaging following administration of BPLP-Gd NPs for biomedical applications including cancer detection.

초순수 생산을 위한 최적공정 조합 평가 (A Study of the Optimization Process Combination on the Ultrapure Water Treatment System)

  • 이경혁;김동규;권병수;정관수
    • 대한환경공학회지
    • /
    • 제38권7호
    • /
    • pp.364-370
    • /
    • 2016
  • 본 연구에서는 초순수 생산을 위한 개별공정들의 특성을 고려하여 공정조합 최적화 방안을 결정하는 기법을 연구하였다. 산업 활동에 사용하는 공업용수 중 고도의 기술집합 산업에서 요구되는 고순도 용수인 초순수를 생산하는 공정은 여과, 이온교환, 역삼투, 탈기, 자외선 산화 등 이 있다. 초순수 공정은 다양한 15~20개 정도의 수처리 단위 공정이 조합을 이루고 있다. 본 연구에서는 초순수 생산 모형플랜트를 운영하여 다양한 처리 공정의 조합을 통해 수질 및 경제성을 고려하여 평가하였다. 평가된 19종류의 공정조합 중 11개 공정조합이 목표로 하는 최종 수질을 만족했다. 이러한 11종의 공정조합에 대해 안정성과 경제성을 평가하였다.

Ring-Opening Metathesis Polymerization and Hydrogenation of Ethyl-substituted Tetracyclododecene

  • Kwon, Oh-Joon;Vo, Huyen Thanh;Lee, Sul-Bee;Kim, Tae-Kyung;Kim, Hoon-Sik;Lee, Hyun-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권8호
    • /
    • pp.2737-2742
    • /
    • 2011
  • Ring-opening metathesis polymerization (ROMP) of an ethyl-substituted tetracyclododecene (8-ethyltetracyclo[$4.4.0.1^{2,5}.1^{7,10}$] dodec-3-ene, Et-TCD) was carried out in the presence of a ternary catalyst system consisting of $WCl_6$, triisobutyl aluminium (iso$Bu_3Al$), and ethanol. The optimal molar ratio of Et-TCD/$WCl_3$/iso-$Bu_3Al$/ethanol was found as 500/1/3/2 at which the yield of ring-opened polymer was 100%. 1-Hexene was shown to be an effective molecular weight controlling agent for ROMP reaction of Et-TCD. The hydrogenation of the ring opened polymer (p-Et-TCD) was conducted successfully using Pd(5 wt %)/${\gamma}$-$Al_2O_3$ at $80^{\circ}C$ for 1 h. Chemical structures of p-Et-TCD and its hydrogenated product($H_2$-p-Et-TCD) were characterized using 2D NMR techniques ($^1H-^1H$ COSY and $^1H-^{13}C$ HSQC). The changes of physical properties such as thermal stability, glass transition temperature and light transmittance after the hydrogenation were also investigated using TGA, DSC, and UV.