• Title/Summary/Keyword: UV nanoimprint

Search Result 69, Processing Time 0.036 seconds

Development of UV curable polymer and curing characteristics estimation for UV nanoimprint (UV 나노임프린트를 위한 UV 경화성 수지 개발 및 경화 특성 평가)

  • 이진우;이승재;이응숙;정준호;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1220-1223
    • /
    • 2003
  • The UV nanoimprint technology uses the UV light as the energy source. Because the imprint process is carried out in room temperature and low pressure, this technology has its own merits compared to the thermal nanoimprint. However, in UV nanoimprint technology, a resin which has low viscosity is essential for the improvement of accuracy. In this research, a resin (named as IMS01) which has relatively low viscosity was developed. And a measurement system was developed in order to measure the degree of cure of the resin. The measurement system which is composed of FT-IR, UV light source and optical guide can measure the degree of cure in real time. From the experimental results, it was found that the IMS01 is cured more rapidly than existing resin (PAK01).

  • PDF

UV transparent stamp fabrication for UV nanoimprint lithography (UV 나노임프린트 리소그래피용 UV 투과성 나노스탬프 제작)

  • Jeong, Jun-Ho;Sim, Young-Suk;Sohn, Hyon-Kee;Shin, Young-Jae;Lee, Eung-Suk;Hur, Ik-Boum;Kwon, Sung-Won
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1069-1072
    • /
    • 2003
  • Ultraviolet-nanoimprint lithography (UV-NIL) is a promising nanoimprint method for cost-effectively defining nanometer scale structures at room temperature and low pressure. Nanostamp fabrication technology is a key technology for UV-NIL because fabricating a high resolution nanostamp is the first step for defining high resolution nanostructures in a substrate. We used quartz as an UV transparent stamp material for the UVNIL. A $5{\times}5{\times}0.09$ inch stamp was fabricated using the quartz etch process in which Cr film was used as a hard mask for transferring nanostructures into the quartz. In this paper, we describe the quartz etching process and discuss the results including SEM images.

  • PDF

UV/Thermal Hybrid Nanoimprint System for Flexible Substrates (유연기판을 위한 UV/Thermal 하이브리드방식 나노임프린트 시스템)

  • Lim, Hyung-Jun;Lee, Jae-Jong;Choi, Kee-Bong;Kim, Gee-Hong;Ahn, Hyun-Jin;Ryu, Ji-Hyeong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.245-250
    • /
    • 2011
  • An UV/thermal hybrid nanoimprint lithography system was designed and implemented for the pattern transfer to flexible substrates. This system can utilize a plate stamp, roll stamp, and film stamp. For all cases of using those stamps, this system is also switchable an UV or thermal nanoimprint lithography mode. This paper shows how to design the heating and UV curing plates and proposes how to change them easily. Because the pressure condition and the speed of the press roller varies by the characteristics of the stamp and substrate, all the parameters related to the nanoimprint lithography have to adjustable. Some transferred patterns are shown in this paper to verify the performance of the hybrid nanoimprint lithography system. The flexible substrates with nano-scale patterns on them will be key components for next generation technologies such as flexible displays, bendable semi-conductors, and solar cells.

Single-step UV nanoimprint lithography on a 4" Si wafer (4" Si 웨이퍼에 대한 single-step UV 나노임프린트 리소그래피)

  • 정준호;손현기;심영석;신영재;이응숙;최성욱;김재호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.199-202
    • /
    • 2003
  • Ultraviolet-nanoimprint lithography (UV-NIL) is a promising method for cost-effectively defining nanoscale structures at room temperature and low pressure. Since the resolution of nanostructures depends strongly upon that of nanostamps, the nanostamp fabrication technology is a key technology to UV-NIL. In this paper, a 5$\times$5$\times$0.09 in. quartz stamp whose critical dimension is 377 nm was fabricated using the etch process in which a Cr film was employed as a hard mask for transferring nanostructures onto the quartz plate. To effectively apply tile fabricated 5-in. stamp to UV-NIL on a 4-in. Si wafer, we have proposed a new UV-NIL process using a multi-dispensing method as a way to supply resist on a wafer Experiments have shown that the multi-dispensing method can enable UV-NIL rising a large-area stamp.

  • PDF

UV nanoimprint lithography using a multi-dispensing method (다중 디스펜싱 방법에 의한 UV-나노임프린트 리소그래피)

  • 심영석;손현기;신영재;이응숙;정준호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.7
    • /
    • pp.604-610
    • /
    • 2004
  • Ultraviolet-nanoimprint lithography (UV-NIL) is a promising method for cost-effectively defining nanoscale structures at room temperature and low pressure. Since the resolution of transferred nanostructures depends strongly upon that of nanostamps, the nanostamp fabrication technology is a key technology to UV-NIL. In this paper, a $5\times5\times0.09$ in. quartz stamp whose critical dimension is 377 nm was fabricated using the etching process in which a Cr film was employed as a hard mask for transferring nanostructures onto the quartz plate. To effectively apply the fabricated 5-in. stamp to UV-NIL on a 4-in. Si wafer, we have proposed a new UV-NIL process using a multi-dispensing method as a way to supply resist on a wafer. Experiments have shown that the multi-dispensing method can enable UV-NIL using a large-area stamp.

Design of the Dummy Block for Uniform Stamp Deformation in the UV Nanoimprint Lithography (UV 나노 임프린트 공정에서 스탬프 균일 변형을 위한 더미 블록 설계)

  • Kim, Nam-Woong;Kim, Kug-Weon;Chung, Tae-Eun;Sin, Hyo-Chol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.76-81
    • /
    • 2008
  • Nanoimprint lithography(NIL) is an emerging technology enabling cost-effective and high-throughput nanofabrication. Among NILs, significant efforts from both academia and industry have been put in UV NIL research and development because of its ability to pattern at room temperature and at low pressure. In UV NIL, there may be in-line set-up error of the stamp and the substrate. To compensate this error, the dummy blocks are put on the stamp and pressurized uniformly. Contact problems between the stamp and the photoresist layer on the substrate are often happened, which results in the non-uniform residual layer In this paper, the pressurization method on the dummy block is investigated by the finite element method. A new method is recommended and evaluated far the uniform stamp deformation.

The Minimization of Residual Layer Thickness by using optimized dispensing method in UVnanoimprint Lithography Process (UV 나노임프린트 리소그래피 공정에서 레지스트 도포의 최적화를 통한 잔류층 두께의 최소화)

  • Kim K.D.;Jeong J.H.;Sim Y.S.;Lee E.S.;Kim J.H.;Cho Y.K.;Hong S.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.633-636
    • /
    • 2005
  • Imprint lithography is a promising method for high-resolution and high-throughput lithography using low-cost equipment. As with other nanoimprint methods, ultraviolet-nanoimprint lithography (UV-NIL) resolution appears to be limited only by template resolution, and offers a significant cost of ownership reduction when compared to other next generation lithography (NGL) methods such as EUVL and 157 nm lithography. The purpose of this paper is to suggest optimum values of control parameters of Imprio 100 manufactured by Molecular Imprint, Inc., which is the first commercially available UV-NIL tool, for sound nanoimprint. UV-NIL experiments were performed on Imprio 100 to find dispensing recipe for avoiding air entrapment. Dispensing recipe related to residual layer thickness and uniformity was optimized and 40 nm thick residual layer was achieved.

  • PDF

UV-nanoimprint Patterning Without Residual Layers Using UV-blocking Metal Layer (UV 차단 금속막을 이용한 잔류층이 없는 UV 나노 임프린트 패턴 형성)

  • Moon Kanghun;Shin Subum;Park In-Sung;Lee Heon;Cha Han Sun;Ahn Jinho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.275-280
    • /
    • 2005
  • We propose a new approach to greatly simplify the fabrication of conventional nanoimprint lithography (NIL) by combined nanoimprint and photolithography (CNP). We introduce a hybrid mask mold (HMM) made from UV transparent material with a UV-blocking Cr metal layer placed on top of the mold protrusions. We used a negative tone photo resist (PR) with higher selectivity to substrate the CNP process instead of the UV curable monomer and thermal plastic polymer that has been commonly used in NIL. Self-assembled monolayer (SAM) on HMM plays a reliable role for pattern transfer when the HMM is separated from the transfer layer. Hydrophilic $SiO_2$ thin film was deposited on all parts of the HMM, which improved the formation of SAM. This $SiO_2$ film made a sub-10nm formation without any pattern damage. In the CNP technique with HMM, the 'residual layer' of the PR was chemically removed by the conventional developing process. Thus, it was possible to simplify the process by eliminating the dry etching process, which was essential in the conventional NIL method.

  • PDF

Analysis of Nonniformity of Residual Layer Thickness on UV-Nanoimprint Using an EPS(Elementwise Patterned Stamp) (EPS(Elementwise Patterned Stamp)를 이용한 UV 나노임프린트 공정에서 웨이퍼 변형에 따른 잔류층 분석)

  • Kim Ki-Don;Sim Young-Suk;Sohn Hyonkee;Lee Eung-Sug;Lee Sang-Chan;Fang Lingmei;Jeong Jun-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1169-1174
    • /
    • 2005
  • Imprint lithography is a promising method for high-resolution and high-throughput lithography using low-cost equipment. In particular, ultraviolet-nanoimprint lithography (UV-NIL) is applicable to large area imprint easily. We have proposed a new UV-NIL process using an elementwise patterned stamp (EPS), which consists of a number of elements, each of which is separated by channel. Experiments on UV-NIL are performed on an EVG620-NIL using the EPS with 3mm channel width. The replication of uniform sub 70 nm lines using the EPS is demonstrated. We investigate the nonuniformity of residual layer caused by wafer deformation in experiment with varying wafer thickness. Severely deformed wafer works as an obstacle in spreading of dropped resin, which causes nonuniformity of thickness of residual layer. Numerical simulations are conducted to analyze aforementioned phenomenon. Wafer deformation in the process is simulated by using a simplified model, which is a good agreement with experiments.

Comparison of Durability for PUA Type Resin using Wear and Nano-indentation Test (마모 및 나노 압입 시험을 이용한 PUA계 레진의 내구성 비교)

  • Choi, Hyun Min;Kwon, Sin;Jung, Yoon-Gyo;Cho, Young Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.8-15
    • /
    • 2018
  • Films with special properties (e.g., water-repellent films, optical films, anti-reflection films, and flexible films) are referred to as functional films. Recently, there has been interest in fine patterning methods for film fabrication. In particular there have been many studies that use a UV nanoimprint process involving a UV curing method. In this paper, a polymer film was fabricated by the UV nanoimprint process with a micro-pattern, and its durability was evaluated by a wear test and a nano-indentation test. The film mechanical properties (such as coefficient of friction, hardness, and modulus of elasticity) were measured. Moreover, the choice of PUA type resin used in the UV nanoimprint process was confirmed to impact the durability of the thin film. Despite making the polymer film samples using the same method and PUA type resin, different coefficient of friction, hardness, and modulus of elasticity values were obtained. PUA 4 resin had the most favorable coefficient of friction, hardness, and modulus of elasticity. This material is predicted to produce a high durability functional film.