• Title/Summary/Keyword: UV A-LED

Search Result 246, Processing Time 0.028 seconds

Synthesis of 125I-Labeled Gold Nanoparticles for a Molecular Imaging (분자영상용 방사성 금 나노입자 합성)

  • Son, Min Ju;Rho, Jong Kook;Lee, Joo-Sang;Jang, Beom-Su;Park, Sang Hyun
    • Journal of Radiation Industry
    • /
    • v.6 no.2
    • /
    • pp.139-145
    • /
    • 2012
  • Gold nanoparticles (GNPs) have led to the development of a new field in the diagnosis and treatment of diseases such as cancer. An efficient synthesis of gold nanoparticles within the range of 8~57 nm was established by ${\gamma}-ray$ irradiation. The good point of a radiation-based method is the production of gold nanoparticles with a higher concentration and narrower size distribution compared with conventional methods. The size of gold nanoparticles was controlled using two methods. : (i) varying the ${\gamma}-ray$ irradiation dose of 10 to 25 kGy and (ii) varying the concentration of $HAuCl_4$ solution from 4 to 40 mM. In addition, the GNPs were radiolabeled using $[^{125}I]NaI$ in a simple and fast manner with high yields. The produced gold nanoparticles were characterized using a transmission electron microscopy (TEM), a UV-visible spectrophotometer, and a radio-TLC imaging scanner. From these results, these radiolabeled GNPs can be applicable for a radioisotope tag of biomolecules.

Improved Biosurfactant Production by Bacillus subtilis SPB1 Mutant Obtained by Random Mutagenesis and Its Application in Enhanced Oil Recovery in a Sand System

  • Bouassida, Mouna;Ghazala, Imen;Ellouze-Chaabouni, Semia;Ghribi, Dhouha
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.95-104
    • /
    • 2018
  • Biosurfactants or microbial surfactants are surface-active biomolecules that are produced by a variety of microorganisms. Biodegradability and low toxicity have led to the intensification of scientific studies on a wide range of industrial applications for biosurfactants in the field of environmental bioremediation as well as the petroleum industry and enhanced oil recovery. However, the major issues in biosurfactant production are high production cost and low yield. Improving the bioindustrial production processes relies on many strategies, such as the use of cheap raw materials, the optimization of medium-culture conditions, and selecting hyperproducing strains. The present work aims to obtain a mutant with higher biosurfactant production through applying mutagenesis on Bacillus subtilis SPB1 using a combination of UV irradiation and nitrous acid treatment. Following mutagenesis and screening on blood agar and subsequent formation of halos, the mutated strains were examined for emulsifying activity of their culture broth. A mutant designated B. subtilis M2 was selected as it produced biosurfactant at twice higher concentration than the parent strain. The potential of this biosurfactant for industrial uses was shown by studying its stability to environmental stresses such as pH and temperature and its applicability in the oil recovery process. It was practically stable at high temperature and at a wide range of pH, and it recovered above 90% of motor oil adsorbed to a sand sample.

Isolation, Production, and Characterization of Protease from Bacillus subtilis IB No. 11

  • Lee, Min-Hyang;Lee, Kang-Moon;Choi, Yong-Jin;Baek, Yeon-Soo
    • Journal of Animal Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.527-536
    • /
    • 2009
  • A potent protein degrading bacterium was isolated from soil samples of different environments. Polyphasic taxonomic studies and phylogenetic 16S rRNA sequence analyses led to identify the isolate IB No. 11 as a strain of Bacillus subtilis. The isolated strain was recognized to produce protease constitutively, and the maximum production (1.64 units/ml) was attained in a shake flask culture when the isolate was grown at $40^{\circ}C$, for 32 h in basal medium supplemented with starch (0.25%) and gelatin (1.25%) as sole carbon and nitrogen source, respectively. The optimum pH and temperature for the protease activity were determined to be pH 7.0 and $50^{\circ}C$, respectively. $Ca^{2+}$ and $Mn^{2+}$ enhanced remarkably the protease activity but neither showed positive effect on the protease's thermal stability. In addition, it was observed that the protease was fairly stable in the pH range of 6.5-8.0 and at temperatures below $50^{\circ}C$, and it could be a good candidate for an animal feed additive. The inhibition profile of the protease by various inhibitors indicated that the enzyme is a member of serine-proteases. A combination of UV irradiation and NTG mutagenesis allowed to develop a protease hyper-producing mutant strain coded as IB No. 11-4. This mutant strain produced approximately 3.23-fold higher protease activity (6.74 units/mg) than the parent strain IB No. 11 when grown at $40^{\circ}C$ for 32h in the production medium. The protease production profile of the selected mutants was also confirmed by the zymography analysis.

Optical and Electrical Properties of ZnO Hybrid Structure Grown on Glass Substrate by Metal Organic Chemical Vapor Deposition (유기금속화학증착법으로 유리기판 위에 성장된 산화아연 하이브리드 구조의 광학적 전기적 특성)

  • Kim, Dae-Sik;Kang, Byung Hoon;Lee, Chang-Min;Byun, Dongjin
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.543-549
    • /
    • 2014
  • A zinc oxide (ZnO) hybrid structure was successfully fabricated on a glass substrate by metal organic chemical vapor deposition (MOCVD). In-situ growth of a multi-dimensional ZnO hybrid structure was achieved by adjusting the growth temperature to determine the morphologies of either film or nanorods without any catalysts such as Au, Cu, Co, or Sn. The ZnO hybrid structure was composed of one-dimensional (1D) nanorods grown continuously on the two-dimensional (2D) ZnO film. The ZnO film of 2D mode was grown at a relatively low temperature, whereas the ZnO nanorods of 1D mode were grown at a higher temperature. The change of the morphologies of these materials led to improvements of the electrical and optical properties. The ZnO hybrid structure was characterized using various analytical tools. Scanning electron microscopy (SEM) was used to determine the surface morphology of the nanorods, which had grown well on the thin film. The structural characteristics of the polycrystalline ZnO hybrid grown on amorphous glass substrate were investigated by X-ray diffraction (XRD). Hall-effect measurement and a four-point probe were used to characterize the electrical properties. The hybrid structure was shown to be very effective at improving the electrical and the optical properties, decreasing the sheet resistance and the reflectance, and increasing the transmittance via refractive index (RI) engineering. The ZnO hybrid structure grown by MOCVD is very promising for opto-electronic devices as Photoconductive UV Detectors, anti-reflection coatings (ARC), and transparent conductive oxides (TCO).

Synthesis and Design of Electroactive Polymers for Improving Efficiency and Thermal Stability in Organic Photovoltaics

  • Kim, Beom-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.11.2-11.2
    • /
    • 2011
  • Polymer based organic photovoltaics have attracted a great deal of attention due to the potential cost-effectiveness of light-weight and flexible solar cells. However, most BHJ polymer solar cells are not thermally stable as subsequent exposure to heat drives further development of the morphology towards a state of macrophase separation in the micrometer scale. Here we would like to show three different approaches for developing new electroactive polymers to improve the thermal stability of the BHJ solar cells, which is a critical problem for the commercialization of these solar cells. For one of the examples, we report a new series of functionalized polythiophene (PT-x) copolymers for use in solution processed organic photovoltaics (OPVs). PT-x copolymers were synthesized from two different monomers, where the ratio of the monomers was carefully controlled to achieve a UV photo-crosslinkable layer while leaving the ${\pi}-{\pi}$ stacking feature of conjugated polymers unchanged. The crosslinking stabilizes PT-x/PCBM blend morphology preventing the macro phase separation between two components, which lead to OPVs with remarkably enhanced thermal stability. The drastic improvement in thermal stabilities is further characterized by microscopy as well as grazing incidence X-ray scattering (GIXS). In the second part of talk, we will discuss the use of block copolymers as active materials for WOLEDs in which phosphorescent emitter isolation can be achieved. We have exploited the use of triarylamine (TPA) oxadiazole (OXA) diblock copolymers (TPA-b-OXA), which have been used as host materials due to their high triplet energy and charge-transport properties enabling a balance of holes and electrons. Organization of phosphorescent domains in TPA-b-OXA block copolymers is demonstrated to yield dual emission for white electroluminescence. Our approach minimizes energy transfer between two colored species by site isolation through morphology control, allowing higher loading concentration of red emitters with improved device performance. Furthermore, by varying the molecular weight of TPA-b-OXA and the ratio of blue to red emitters, we have investigated the effect of domain spacing on the electroluminescence spectrum and device performance.

  • PDF

Synthesis of Poly (lactide)-b-Poly (glycerol) (PLA-b-PG) Block Copolymer (Poly (lactide)-b-Poly (glycerol) 블록 공중합체의 중합)

  • Lee, John Hwan;Oh, Seong-Geun;Kim, Yong-Jin
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.2
    • /
    • pp.165-174
    • /
    • 2017
  • This study reports a synthesis of an amphiphilic linear block copolymer consisting of a hydrophobic poly (lactide) (PLA) block and a hydrophilic hyperbranched polyglycerol (hbPG) block, PLA-b-hbPG. Simple chemical modification of the hbPG block with 4-hydroxycinnamic acid (CA) led to a photo-crosslinkable block copolymer, PLA-b-hbPG-CA. Nanosized micelles of the block copolyemrs were used as drug carriers for sustainable release. The hbPG shell made of a small molecular weight hbPG block showed excellent hydrophilicity, which can minimize in vivo toxicity. The UV-crosslinked PLA-b-hbPG-CA micelles loaded with drugs colud be served as a drug delivery carrier for its biocompatibility and self-assembled structures.

UV-induced Photodamage - attenuating Properties of Water Extract from Lentinuls edodes (피부각질형성세포에서 표고버섯 물 추출물의 피부노화 억제 효과)

  • Lee, Jung Im;Oh, Jung Hwan;Park, So Young;Kim, Hye Ran;Jung, Kyung Im;Jeon, Byung-Jin;Kim, Dongmin;Kong, Chang-Suk
    • Journal of Life Science
    • /
    • v.30 no.10
    • /
    • pp.877-885
    • /
    • 2020
  • Lentinuls edodes has been used for traditional food and medicine around Asia, and a variety of biological effects have been reported. In this study, L. edodes water extract (LWE) was investigated for its anti-photodamage effect in HaCaT keratinocytes. To perform the necessary assays, L. edodes was extracted with distilled water for 8 hr at 40℃ in an extract tank. Anti-photodamage activity was assessed using a scratch wound healing assay, cell proliferation, and a reactive oxygen species (ROS) scavenging test and by measuring the mRNA and protein expression levels of matrix metalloproteinases (MMPs) and type I procollagen. MMPs and collagen expression are major markers of UV-induced photodamage in skin. Prior to photodamage analysis, the total polyphenol and β-glucan contents of the LWE were evaluated and found to be 4.64 mg GAE/g DW and 165.96 mg/g, respectively. Treatment with LWE induced cell migration and cell proliferation in UV-irradiated HaCaT cells, and LWE effectively scavenged the ROS induced by H2O2 and UVB irradiation in HaCaT cells. UVB irradiation induced ROS generation and led to increased production of MMP-1 and MMP-9 and to decreased collagen production in human keratinocytes. Treatment with LWE upregulated the expression levels of MMP-1, MMP-9, and type I procollagen in UVB-irradiated HaCaT cells. This study suggests that LWE could be used to develop cosmetic materials with anti-photodamage effects.

Synthesis of Iodine Substituted Polycarbosilane by High Temperature and Pressure Reaction Process and Properties Characterization (고온, 고압에서의 요오드 치환 Polycarbosilane의 합성 및 특성)

  • Byen, Ji Cheol;Sharbidre, Rakesh Sadanand;Kim, Yoon Ho;Park, Seung Min;Ko, Myeong Seok;Min, Hyo Jin;Lee, Na young;Ryu, Jae-Kyung;Kim, Taik-Nam
    • Korean Journal of Materials Research
    • /
    • v.30 no.9
    • /
    • pp.489-494
    • /
    • 2020
  • SiC is a material with excellent strength, heat resistance, and corrosion resistance. It is generally used as a material for SiC invertors, semiconductor susceptors, edge rings, MOCVD susceptors, and mechanical bearings. Recently, SiC single crystals for LED are expected to be a new market application. In addition, SiC is also used as a heating element applied directly to electrical energy. Research in this study has focused on the manufacture of heating elements that can raise the temperature in a short time by irradiating SiC-I2 with microwaves with polarization difference, instead of applying electric energy directly to increase the convenience and efficiency. In this experiment, Polydimethylsilane (PDMS) with 1,2 wt% of iodine is synthesized under high temperature and pressure using an autoclave. The synthesized Polycarbosilane (PCS) is heat treated in an argon gas atmosphere after curing process. The experimental results obtain resonance peaks using FT-IR and UV-Visible, and the crystal structure is measured by XRD. Also, the heat-generating characteristics are determined in the frequency band of 2.45 GHz after heat treatment in an air atmosphere furnace.

Micro-gap DBD Plasma and Its Applications

  • Zhang, Zhitao;Liu, Cheng;Bai, Mindi;Yang, Bo;Mao, Chengqi
    • Journal of the Speleological Society of Korea
    • /
    • no.76
    • /
    • pp.37-42
    • /
    • 2006
  • The Dielectric Barrier Discharge (DBD) is a nonequilibrium gas discharge that is generated in the space between two electrodes, which are separated by an insulating dielectric layer. The dielectric layer can be put on either of the two electrodes or be inserted in the space between two electrodes. If an AC or pulse high voltage is applied to the electrodes that is operated at applied frequency from 50Hz to several MHz and applied voltages from a few to a few tens of kilovolts rms, the breakdown can occur in working gas, resulting in large numbers of micro-discharges across the gap, the gas discharge is the so called DBD. Compared with most other means for nonequilibrium discharges, the main advantage of the DBD is that active species for chemical reaction can be produced at low temperature and atmospheric pressure without the vacuum set up, it also presents many unique physical and chemical process including light, heat, sound and electricity. This has led to a number of important applications such as ozone synthesizing, UV lamp house, CO2 lasers, et al. In recent years, due to its potential applications in plasma chemistry, semiconductor etching, pollution control, nanometer material and large area flat plasma display panels, DBD has received intensive attention from many researchers and is becoming a hot topic in the field of non-thermal plasma.

Effect of Washing Solvent and Washing Method on Flexural Strength of 3D-Printed Temporary Resin Material (세척 용액 및 세척 방법이 3D 프린팅 임시수복용 레진의 굴곡강도에 미치는 영향)

  • Hae-Bom Kim;Jae-Won Choi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_2
    • /
    • pp.389-395
    • /
    • 2024
  • The purpose of this study was to evaluate the effect of different washing solvents and washing methods on the flexural strength of 3D printed temporary resin. A bar(25 × 2 × 2 mm) was produced with a layer thickness of 50 ㎛ using an LCD-type 3D printer and divided into 15 groups(n = 10, each) according to washing solution(IPA; 99% isopropyl alcohol, TPM; 93% Tripropylene glycol monomethylether, ETL; Ethanol, TWC; Twin 3D Cleaner, and DNC; DIO navi Cleaner) and washing method(Dip; Dip washing, Ultra; Ultrasonic washing, and Auto; Automated washing). All groups were washed for 5 minutes, and post-cured for 5 minutes using a UV LED light curing machine. The Flexural strength was measured using a three-point bending test using a universal testing machine. For statistical analysis, one-way ANOVA, Tukey HSD post hoc test, Kruskal-Wallis test and post-hoc by Bonferroni-Dunn test(𝛼=.05) were performed depending on whether the normality test was satisfied. In all washing solvents except TPM and DNC, the Dip group showed the lowest flexural strength values, while the Auto group showed the highest flexural strength values except for DNC. Additionally, the washing solution showed completely different flexural strength values depending on the washing method.