Browse > Article
http://dx.doi.org/10.3740/MRSK.2020.30.9.489

Synthesis of Iodine Substituted Polycarbosilane by High Temperature and Pressure Reaction Process and Properties Characterization  

Byen, Ji Cheol (Department of Materials Science Engineering, Paichai University)
Sharbidre, Rakesh Sadanand (Department of Materials Science Engineering, Paichai University)
Kim, Yoon Ho (Department of Materials Science Engineering, Paichai University)
Park, Seung Min (Department of Materials Science Engineering, Paichai University)
Ko, Myeong Seok (Department of Materials Science Engineering, Paichai University)
Min, Hyo Jin (Department of Materials Science Engineering, Paichai University)
Lee, Na young (Department of Materials Science Engineering, Paichai University)
Ryu, Jae-Kyung (Deptartment of Dental Technology and Science, Shinhan University)
Kim, Taik-Nam (Department of Materials Science Engineering, Paichai University)
Publication Information
Korean Journal of Materials Research / v.30, no.9, 2020 , pp. 489-494 More about this Journal
Abstract
SiC is a material with excellent strength, heat resistance, and corrosion resistance. It is generally used as a material for SiC invertors, semiconductor susceptors, edge rings, MOCVD susceptors, and mechanical bearings. Recently, SiC single crystals for LED are expected to be a new market application. In addition, SiC is also used as a heating element applied directly to electrical energy. Research in this study has focused on the manufacture of heating elements that can raise the temperature in a short time by irradiating SiC-I2 with microwaves with polarization difference, instead of applying electric energy directly to increase the convenience and efficiency. In this experiment, Polydimethylsilane (PDMS) with 1,2 wt% of iodine is synthesized under high temperature and pressure using an autoclave. The synthesized Polycarbosilane (PCS) is heat treated in an argon gas atmosphere after curing process. The experimental results obtain resonance peaks using FT-IR and UV-Visible, and the crystal structure is measured by XRD. Also, the heat-generating characteristics are determined in the frequency band of 2.45 GHz after heat treatment in an air atmosphere furnace.
Keywords
SiC; microwave; polarization; polydimethylsilane; polycarbosilane;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. J. Kim, Industry Trends Report 2012-5, p. 1-19, KICET (2012).
2 J. D. Lee, Ceramist, 14, 51 (2011).
3 G. P. Moharana, S. K. Singh, P. D. Babu and H. K. Narayanan, J. Alloys Compd., 765, 314 (2018).   DOI
4 L. Sun and J. Hu, Comput. Condens. Matter., 16, e00323 (2018).   DOI
5 B. Kuang, Y. Dou, Z. Wang, M. Ning, H. Jin, D. Guo, M. Cao, X. Fang, Y. Zhao and J. Li, Appl. Surf. Sci., 445, 383 (2018).   DOI
6 Y. Wang, P. Xiao, W. Zhou, H. Luo, Z. Li, W. Chen and Y. Li, Ceram. Int., 44, 3606 (2018).   DOI
7 S. Yajima, Y. Hasegawa, J. Hayashi and M. Limura, J. Mater. Sci., 13, 2569 (1978).   DOI
8 L. V.Interrante, K. Moraes, Q. Liu, N. Lu, A. Puerta and L. G. Sneddon, Pure Appl. Chem., 74, 2111 (2002).   DOI
9 A. Herzog, M. Thunemann, U. Vogt and O. Beffort, J. Eur. Ceram. Soc., 25, 187 (2005).   DOI
10 A. R. Bunsell and A. Piant, J. Mater. Sci., 41, 823 (2006).   DOI
11 X. Cheng, Z. Xie, J. Xiao and Y. Song, J. Inorg. Organomet. Polym., 15, 253 (2005).   DOI
12 X. Cheng, Z. Xie, Y. Song, J. Xiao and Y. Wang, J. Appl. Polym. Sci., 99, 1188 (2005).   DOI
13 Y. Huang, L. Liu, S. Zhang, H. Yu and J. Yang, Eur. Polym. J., 98, 347 (2018).   DOI
14 C. Zheng, B. Zhu, X. Li and Y. Wang, Acta Polym. Sin, 1, 246 (2004).
15 Y. Gou, H. Wang, K. Jian, C. Shao and X. Wang, J. Eur. Ceram. Soc., 37, 517 (2017).   DOI
16 S. M. Dong, G. Chollon, C. Labrugere, M. Lahaye, A. Guette, J. L. Bruneel, M. Couzi, R. Naslain and D. L. Jiang, J. Mater. Sci., 36, 2371 (2017).   DOI
17 P. Zhao, Q. Li, R. Yi, Z. Wang, L. Lu, X. Cheng and S. Dong, J. Alloys Compd., 748, 36 (2018).   DOI
18 Y. Gou, H. Wang, K. Jian, Y. Wang, J. Wang, Y. Song and Z. Xie, J. Mater. Sci., 51, 8240 (2016).   DOI
19 P. Fitriani, A. S. Sharma and D.-H. Yoon, J. Nucl. Mater., 503, 226 (2018).   DOI
20 H.-J. Yeom, Y.-W. Kim and K. J. Kim, J. Eur. Ceram. Soc., 35, 77 (2015).   DOI
21 Y.-W. Kim, S.-H. Lee, T. Nishimura, M. Mitomo, Acta Mater., 53, 4701 (2005).   DOI
22 W. Cui, K. Wang, F. Xia and P. Wang, Ceram. Int., 44, 5500 (2018).   DOI
23 J. C. G. Martin, J. Blahins, U. Gross, T. Ingham, A. Goddard, A. S. Mahajan, A. Ubelis and A. Saiz-Lopez, Atmos. Meas. Tech., 4, 29 (2011).   DOI
24 H. Yang, M. Cao, Y. Li, H. Shi, Z. Hou, X. Fang, H. Jin, W. Wang and J. Yuan, Adv. Opt. Mater., 2, 199 (2014).   DOI
25 W. Duan, X. Yin, Q. Li, X. Liu, L. Cheng and L. Zhang, J. Eur. Ceram. Soc., 34, 257 (2014).   DOI
26 J. Yuan, H.-J. Yang, Z.-L. Hou, W.-L. Song, H. Xu, Y.-Q. Kang, H.-B. Jin, X.-Y. Fang and M.-S. Cao, Powder Technol., 237, 309 (2013).   DOI
27 J. Kuang, P. Jiang, F. Ran and W. Cao, J. Alloys Compd., 687, 227 (2016).   DOI
28 C.-H. Peng, P. S. Chen and C.-C. Chang, Ceram. Int., 40, 47(2014).   DOI