• Title/Summary/Keyword: UV A-LED

Search Result 246, Processing Time 0.028 seconds

Luminescence Properties of White LED with Different CdSe nanoparticles Phosphor Layer (CdSe 나노입자 형광층 구조에 따른 백색 LED 발광 특성 연구)

  • Chung, Won-Keun;Yu, Hong-Jeong;Park, Sun-Hee;Chun, Byung-Hee;Kim, Sung-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.320-324
    • /
    • 2011
  • TOPO/TOP capped CdSe nanoparticles were synthesized via thermal-solvent method. The 540 nm green and 620 nm red emitting CdSe nanoparticles were obtained by controlling the reaction time and temperature. Phosphor conversion white LED was produced combining a 460 nm emitting InGaN LED chip as an excitation source with 540 and 620 nm CdSe nanoparticles as phosphors. The single or double phosphor layer was fabricated by mixing with epoxy, and investigated the effects on the luminous properties of the white LED. The single phosphor layer white LED showed 5.78 lm/W with CIE of (0.36, 0.45) in reddish white, and the double phosphor layer white LED showed 7.28 lm/W with that of (0.32, 0.34) in pure white at 20 mA. When the 400 nm near-UV LED was applied to optical pumping source, the luminous efficiency of white LED was enhanced to 8.76 lm/W.

Luminescence properties of Eu- and Mn-activated $BaMgP_2O_7$ as a potential red phosphor for white emission

  • Kim, Yong-Kwang;Choi, Sung-Ho;Jung, Ha-Kyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.581-584
    • /
    • 2008
  • $BaMgP_2O_7$:Eu,Mn phosphors for white emission were synthesized and their luminescent properties were investigated under UV excitation. The phosphor emits two colors: a blue band by $Eu^{2+}$ and a red band by $Mn^{2+}$. Due to the efficient energy transfer from $Eu^{2+}$ to $Mn^{2+}$, the red emission positioned at 615 nm is greatly enhanced with increasing $Mn^{2+}$ content up to 17.5 mol%.

  • PDF

Analysis of Deep-Trap States in GaN/InGaN Ultraviolet Light-Emitting Diodes after Electrical Stress

  • Jeong, Seonghoon;Kim, Hyunsoo;Lee, Sung-Nam
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1879-1883
    • /
    • 2018
  • We analyzed the deep-trap states of GaN/InGaN ultraviolet light-emitting diodes (UV LEDs) before and after electrical stress. After electrical stress, the light output power dropped by 5.5%, and the forward leakage current was increased. The optical degradation mechanism could be explained based on the space-charge-limited conduction (SCLC) theory. Specifically, for the reference UV LED (before stress), two sets of deep-level states which were located 0.26 and 0.52 eV below the conduction band edge were present, one with a density of $2.41{\times}10^{16}$ and the other with a density of $3.91{\times}10^{16}cm^{-3}$. However, after maximum electrical stress, three sets of deep-level states, with respective densities of $1.82{\times}10^{16}$, $2.32{\times}10^{16}cm^{-3}$, $5.31{\times}10^{16}cm^{-3}$ were found to locate at 0.21, 0.24, and 0.50 eV below the conduction band. This finding shows that the SCLC theory is useful for understanding the degradation mechanism associated with defect generation in UV LEDs.

The LLLT effect of visible and IR light LEDs in short distance (근거리에서 가시광과 적외광 LED의 LLLT (low level light therapy) 효과)

  • Kim, Sheen-Ja;Lee, Young-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.283-285
    • /
    • 2013
  • 피부의 관리를 위한 방법 중 광을 이용한 케어는 비침습적인 방법으로 세포를 활성화 시켜 도움을 주는 매우 유용한 방법이다. 최근에는 낮은 에너지의 LED를 광원으로 이용하는 LLLT (Low Level Light Therapy)가 많이 적용이 된다. 본 논문에서는 피부 미용기기에서 많이 사용되고 있는 가시광 영역의 적색과 황색, 그리고 적외선 영역의 LED를 이용하여 array를 제작하였다. 제작된 LED array는 5V의 전압과 50mA의 전류로 구동되며, 적색이 평균 $10.7mW/cm^2$, 황색이 평균 $1.8mW/cm^2$, 적외선이 평균 $5.5mW/cm^2$의 광출력을 갖는다. 이를 배양된 human cell plate에 각각 10, 20, 40분의 시간으로 조사하였으며, LED array와 조사면 사이에 20 mm의 거리를 두어 균일한 광량이 조사 될 수 있도록 하였다. 실험결과, wound healing의 경우는 적색광을 조사하였을 때, injury line의 길이가 $604.36{\mu}m$에서 10분 조사 시 $368.92{\mu}m$, 20분 조사 시 $298.04{\mu}m$, 40분 조사 시 $491.22{\mu}m$로 줄어드는 효과를 보였으며 특히 20분간 조사하였을 경우의 효과가 가장 좋았다. Cell regeneration의 경우는 황색광을 20분간 조사하였을 경우에 UV 에 의해 손상된 세포 수가 가장 크게 줄어드는 것을 확인할 수 있었다. 결과적으로 photorejuvenation 효과를 줄 수 있는 wound healing과 cell regeneration에는 적색 및 황색광의 LED array를 20분간 조사하였을 때가 가장 효과적이었으며, 적외광의 경우에는 모든 실험에서 효과가 없음을 확인할 수 있었다.

  • PDF

Ultraviolet LEDs using n-ZnO:Ga/i-ZnO/p-GaN:Mg heterojunction (n-ZnO/i-ZnO/p-GaN:Mg 이종접합을 이용한 UV 발광 다이오드)

  • Han, W.S.;Kim, Y.Y.;Kong, B.H.;Cho, H.K.;Lee, J.H.;Kim, H.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.50-50
    • /
    • 2008
  • ZnO has been extensively studied for optoelectronic applications such as blue and ultraviolet (UV) light emitters and detectors, because it has a wide band gap (3.37 eV) anda large exciton binding energy of ~60 meV over GaN (~26 meV). However, the fabrication of the light emitting devices using ZnO homojunctions is suffered from the lack of reproducibility of the p-type ZnO with high hall concentration and mobility. Thus, the ZnO-based p-n heterojunction light emitting diode (LED) using p-Si and p-GaN would be expected to exhibit stable device performance compared to the homojunction LED. The n-ZnO/p-GaN heterostructure is a good candidate for ZnO-based heterojunction LEDs because of their similar physical properties and the reproducibleavailability of p-type GaN. Especially, the reduced lattice mismatch (~1.8 %) and similar crystal structure result in the advantage of acquiring high performance LED devices with low defect density. However, the electroluminescence (EL) of the device using n-ZnO/p-GaN heterojunctions shows the blue and greenish emissions, which are attributed to the emission from the p-GaN and deep-level defects. In this work, the n-ZnO:Ga/p-GaN:Mg heterojunction light emitting diodes (LEDs) were fabricated at different growth temperatures and carrier concentrations in the n-type region. The effects of the growth temperature and carrier concentration on the electrical and emission properties were investigated. The I-V and the EL results showed that the device performance of the heterostructure LEDs, such as turn-on voltage and true ultraviolet emission, developed through the insertion of a thin intrinsic layer between n-ZnO:Ga and p-GaN:Mg. This observation was attributed to a lowering of the energy barriers for the supply of electrons and holes into intrinsic ZnO, and recombination in the intrinsic ZnO with the absence of deep level emission.

  • PDF

Preparation and Luminescence Properties of Spherical Sr4Al14O25:Eu2+ Phosphor Particles by a Liquid Synthesis (액상법을 이용한 구상의 Sr4Al14O25:Eu2+ 형광체의 합성 및 발광 특성)

  • Lee, Jeong;Choi, Sungho;Nahm, Sahn;Jung, Ha-Kyun
    • Korean Journal of Materials Research
    • /
    • v.24 no.7
    • /
    • pp.351-356
    • /
    • 2014
  • A spherical $Sr_4Al_{14}O_{25}:Eu^{2+}$ phosphor for use in white-light-emitting diodes was synthesized using a liquid-state reaction with two precipitation stages. For the formation of phosphor from a precursor, the calcination temperature was $1,100^{\circ}C$. The particle morphology of the phosphor was changed by controlling the processing conditions. The synthesized phosphor particles were spherical with a narrow size-distribution and had mono-dispersity. Upon excitation at 395 nm, the phosphor exhibited an emission band centered at 497 nm, corresponding to the $4f^65d{\rightarrow}4f^7$ electronic transitions of $Eu^{2+}$. The critical quenching-concentration of $Eu^{2+}$ in the synthesized $Sr_4Al_{14}O_{25}:Eu^{2+}$ phosphor was 5 mol%. A phosphor-converted LED was fabricated by the combination of the optimized spherical phosphor and a near-UV 390 nm LED chip. When this pc-LED was operated under various forward-bias currents at room temperature, the pc-LED exhibited a bright blue-green emission band, and high color-stability against changes in input power. Accordingly, the prepared spherical phosphor appears to be an excellent candidate for white LED applications.

Synthesis of $M(WO_4)$:Eu (M : Group 1 or 2) for LED and its Luminescent Properties

  • Park, Seung-Hyok;Kim, Chang-Hae;Park, Hee-Dong;Kim, You-Hyuk
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.838-841
    • /
    • 2002
  • $M(WO_4)$:Eu phosphor as a red emitting phosphor for LED was prepared by solid state method. Tungstate phosphors were exited at long wavelength ultra violet region. In special, the emission of Eu-doped $M(WO_4)$:Eu phosphor under the excitation of 410nm appeared at 613nm. $M(WO_4)$:Eu phosphors with M : Group 1 had a higher excitation intensity than those of the phosphors with M: Group 2 at long-wavelength UV.

  • PDF

Synthesis and Optical Chracterization of 1,1-Difunctioanl-2,3,4,5-Tetraphenylsilole (1,1-Difunctional-2,3,4,5-Tetraphenylsilole의 합성과 광학적 특성)

  • Song, Jinwoo
    • Journal of Integrative Natural Science
    • /
    • v.2 no.2
    • /
    • pp.65-68
    • /
    • 2009
  • Siloles of considerable current interest, both because of their unusual electronic properties and because of their possible application as electron-transporting materials in devices such as light-emitting diodes (LED's) and chemical sensor. Siloles have been characterized by NMR, FT-IR, and UV-vis absorption spectroscopy. Their optical characteristics have been also investigated using photoluminescence spectroscopy. Thus siloles exhibit a low reduction potential and a low-lying LUMO energy level, attributed to ${\sigma}^*-{\pi}^*$ conjugation arising from the interaction between the ${\sigma}^*$ orbital of the sigma-bonded silicon atom and the $\pi^*$ orbital of the butadiene moiety of the ring.

  • PDF

Identification of Green Alga Chlorella vulgaris Isolated from Freshwater and Improvement Biodiesel Productivity via UV Irradiation

  • Gomaa, Mohamed A.;Refaat, Mohamed H.;Salim, Tamer M.;El-Sayed, Abo El-Khair B.;Bekhit, Makhlouf M.
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.381-389
    • /
    • 2019
  • Chlorella vulgaris was isolated from the Nile River, Qalubia Governorate, Egypt, for possible use in biodiesel production. BG-II nutrient growth media was used for isolation and laboratory growth. Identification was performed via 18S rRNA gene amplification, followed by sequencing. The alga was exposed to UV-C (254 nm) for 15, 30, and 45 s to improve dry weight accumulation and to increase the oil production. Daily measurements of dry weight ($g{\cdot}l^{-1}$) were performed; oil content and volumetric lipid productivity were also determined. UV-C exposure led to an increase in the volumetric lipid productivity by 27, 27.3, and $32.4mg{\cdot}l^{-1}{\cdot}d^{-1}$ with 15, 30, and 45 s, respectively, as compared with the control, which resulted in $18mg{\cdot}l^{-1}{\cdot}d^{-1}$. Of the examined mutants, the one with the highest productivity was re-irradiated by UV-C (254 nm) for 15, 30, 45, and 60 s. For 15 s of exposure time, the oil content increased to 34%, while it was 31% at 30 s; further, it decreased to 22% at 45 and 60 s exposures. The fatty acid methyl ester profile was 82.22% in the first mutant at 45 s, compared with the wild strain that contained a total of 66.01% of FAs. Furthermore, the highest levels of polyunsaturated fatty acid methyl ester were observed in the mutant exposed for 45 s, and it reached 11.41%, which reduced the cetane number to 71.3.

Development of Projection Scanbeam-SLA using Liquid Crystal Display and Visible Light Emitting Diode (LCD와 가시광선 LED를 사용한 전사방식의 Scanbeam-SLA 개발)

  • Yoon, Su Hyun;Park, In Baek;Kim, Min Sub;Jo, Kwang Ho;Lee, Seok Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.3
    • /
    • pp.340-348
    • /
    • 2013
  • In Projection Stereolithography Apparatus (PSLA), Digital Micromirror Device (DMD) and Liquid Crystal Display (LCD) are used as a beam pattern generator. The DMD shows high resolution, but it is mostly applied in micro stereolithography due to high cost and fabricable area. In LCD, the size of pattern beam is freely controlled due to various panel sizes. The LCD, however, has some limitations such as short life time by the high power light source, non-uniform light intensity of pattern beam and low transmittance of UV-light. To solve these problems in LCD-based PSLA, a Scanbeam-SLA with LCD of 19 inches and visible LED-array is developed. In this system, the light module works like a scanner for uniform illumination. The system configuration, working principle and fabrication examples are addressed in this study.