DOI QR코드

DOI QR Code

Analysis of Deep-Trap States in GaN/InGaN Ultraviolet Light-Emitting Diodes after Electrical Stress

  • Jeong, Seonghoon (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University) ;
  • Kim, Hyunsoo (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University) ;
  • Lee, Sung-Nam (Department of Nano-Optical Engineering, Korea Polytechnic University)
  • Received : 2018.06.28
  • Accepted : 2018.08.28
  • Published : 2018.12.30

Abstract

We analyzed the deep-trap states of GaN/InGaN ultraviolet light-emitting diodes (UV LEDs) before and after electrical stress. After electrical stress, the light output power dropped by 5.5%, and the forward leakage current was increased. The optical degradation mechanism could be explained based on the space-charge-limited conduction (SCLC) theory. Specifically, for the reference UV LED (before stress), two sets of deep-level states which were located 0.26 and 0.52 eV below the conduction band edge were present, one with a density of $2.41{\times}10^{16}$ and the other with a density of $3.91{\times}10^{16}cm^{-3}$. However, after maximum electrical stress, three sets of deep-level states, with respective densities of $1.82{\times}10^{16}$, $2.32{\times}10^{16}cm^{-3}$, $5.31{\times}10^{16}cm^{-3}$ were found to locate at 0.21, 0.24, and 0.50 eV below the conduction band. This finding shows that the SCLC theory is useful for understanding the degradation mechanism associated with defect generation in UV LEDs.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF), Ministry of Trade, Industry & Energy(MOTIE), Chonbuk National University

References

  1. H. Hirayama, S. Fujikawa, N. Noguchi, J. Norimatsu, T. Takano, K. Tsubaki and N. Kamata, Phys. Stat. Sol. (a) 206, 1176 (2009). https://doi.org/10.1002/pssa.200880961
  2. U. Kasten, D. Beyersmann, J. Dahm-Daphi and A. Harwig, Mutat. Res. 336, 143 (1995). https://doi.org/10.1016/0921-8777(94)00052-8
  3. H. Kudo, M. Sawai, Y. Suzuki, X. Wang, T. Gessei, D. Takahasho, T. Arakawa and K. Mitsubayashi, Sens. Actuator B-Chem. 147, 676 (2010). https://doi.org/10.1016/j.snb.2010.03.066
  4. J. Close, J. Ip and K. H. Lam, Renew. Energy 31, 1657 (2006). https://doi.org/10.1016/j.renene.2005.08.034
  5. J. L. Shie, C. H. Lee, C. S. Chiou, C. T. Chang, C. C. Chang and C. Y. Chang, J. Hazard. Mater. 155, 164 (2008). https://doi.org/10.1016/j.jhazmat.2007.11.043
  6. M. Menegehini, L. R. Trevisanello, G. Meneghesso and E. Zanoni, IEEE Trans. Device Mater. Reliab. 8, 323 (2008). https://doi.org/10.1109/TDMR.2008.921527
  7. M. Meneghini, A. Tazzoli, G. Mura, G. Meneghesso and E. Zanoni, IEEE Trans. Electron Dev. 57, 108 (2010). https://doi.org/10.1109/TED.2009.2033649
  8. M. A. Khan, Phys. Stat. Sol. (a) 203, 1764 (2006). https://doi.org/10.1002/pssa.200565427
  9. L. X. Zhao, E. J. Thrush, C. J. Humphreys and W. A. Phillips, J. Appl. Phys. 103, 024501 (2008). https://doi.org/10.1063/1.2829781
  10. E. Jung, M. Kim and H. Kim, IEEE Trans. Electron. Dev. 60, 186 (2013). https://doi.org/10.1109/TED.2012.2226039
  11. E. Jung, J. H. Ryou, C. H. Hong and H. Kim, J. Electrochem. Soc. 158, H132 (2011). https://doi.org/10.1149/1.3524285
  12. G. Meneghesso, S. Levada, R. Pierobon, F. Rampazzo, E. Zanoni, A. Cavallini, A. Castaldini, G. Scamarcio, S. Du and I. Eliasevich, in IEDM Tech. Dig. 103 (2002).
  13. R. Mueller-Mach, G. Mueller, M. Krames and T. Trottier, IEEE J. Sel. Top. Quantum Electron. 8, 339 (2002). https://doi.org/10.1109/2944.999189
  14. M. Meneghini, M. laGrassa, S. Vaccari, B. Galler, R. Zeisel, P. Drechsel, B. Hahn, G. Meneghesso and E. Zanoni, Appl. Phys. Lett. 104, 113505 (2014). https://doi.org/10.1063/1.4868719
  15. L. Hirsch and A. S. Barriere, J. Appl. Phys. 94, 5014 (2003). https://doi.org/10.1063/1.1605252
  16. R. Nana, P. Gnanachchelvi, M. A. Awaah, M. H. Gowda, A. M. Kamto, Y.Wang, M. Park and K. Das, Phys. Stat. Sol. (a) 207, 1489 (2010). https://doi.org/10.1002/pssa.200925596
  17. E. Jung, S. Jeong, J. H. Ryou and H. Kim, J. Nanosci. Nanotechnol. 17, 7339 (2017). https://doi.org/10.1166/jnn.2017.14735
  18. L. R. Trevisanello, M. Meneghini, G. Mura, C. Sanna, S. Buso, G. Spiazzi, M. Vanzi, G. Meneghesso and E. Zanoni, Proc. SPIE 6669, 666913 (2007).
  19. L. Trevisanello, M. Meneghini, G. Mura, M. Vanzi, M. Pavesi, G. Meneghesso and E. Zanoni, IEEE Trans. Device Mater. Reliab. 8, 304 (2008). https://doi.org/10.1109/TDMR.2008.919596
  20. M. Meneghesso and E. Zanoni, IEEE Trans. Electron Dev. 53, 2981 (2006). https://doi.org/10.1109/TED.2006.885544
  21. W. Shockley and Bell Syst. Tech. J. 28, 435 (1949). https://doi.org/10.1002/j.1538-7305.1949.tb03645.x
  22. H. Kim, J. Cho, Y. Park and T. Y. Seong, Appl. Phys. Lett. 92, 092115 (2008). https://doi.org/10.1063/1.2844887
  23. D. Zhu, A. N. Noemaun, J. Kim, E. F. Schubert, M. H. Crawford and D. D. Koleske, Appl. Phys. Lett. 94, 081113 (2009). https://doi.org/10.1063/1.3089687
  24. M. A. Lambert and P. Mark, Current Injection in Solids (Academic Press, New York, 1970).
  25. A. Rose, Phys. Rev. 97, 1538 (1955). https://doi.org/10.1103/PhysRev.97.1538
  26. J. Osaka, Y. Ohno, S. Kishimoto, K. Maezawa and T. Mizutani, Appl. Phys. Lett. 87, 222112 (2005). https://doi.org/10.1063/1.2137901
  27. A. Hierro, S. A. Ringel, M. Hansen, J. S. Speck, U. K. Mishra and S. P. Denbaars, Appl. Phys. Lett. 77, 1499 (2000). https://doi.org/10.1063/1.1290042
  28. T. Mattila and R. M. Nieminen, Phys. Rev. B 54, 16676 (1996). https://doi.org/10.1103/PhysRevB.54.16676
  29. A. Mao, J. Cho, Q. Dai, E. F. Schubert, J. K. Son and Y. Park, Appl. Phys. Lett. 98, 023503 (2011). https://doi.org/10.1063/1.3541880
  30. V. Kuksenkov, H. Temkin, A. Osinsky, R. Gaska and M. A. Khan, Appl. Phys. Lett. 72, 1365 (1998). https://doi.org/10.1063/1.121056
  31. J. Toivonen, T. Hakkarainen, M. Sopanen, H. Lipsanen, J. Oila and K. Saarinen, Appl. Phys. Lett. 82, 40 (2003). https://doi.org/10.1063/1.1533843
  32. R. Armitage, W. Hong, Q. Yang, H. Feick, J. Gebauer, E. R. Weber, S. Hautakangas and K. Saarinen, Appl. Phys. Lett. 82, 3457 (2003). https://doi.org/10.1063/1.1578169
  33. M. W. Bayerl, M. S. Brandt, O. Ambacher, M. Stutzmann, E. R. Glaser, R. L. Henry, A. E. Wickenden, D. D. Koleske, T. Suski, I. Grzegory and S. Porewski, Phys. Rev. B 63, 125203 (2001). https://doi.org/10.1103/PhysRevB.63.125203
  34. Q. Yan, A. Janotti, M. Scheffler and C. G. van de Walle, Appl. Phys. Lett. 100, 142110 (2012). https://doi.org/10.1063/1.3699009
  35. L. Lymperakis, J. Neugebauer, M. Albrecht, T. Remmele and H. P. Strunk, Phys. Rev. Lett. 93, 196401 (2004). https://doi.org/10.1103/PhysRevLett.93.196401