Browse > Article
http://dx.doi.org/10.3938/jkps.73.1879

Analysis of Deep-Trap States in GaN/InGaN Ultraviolet Light-Emitting Diodes after Electrical Stress  

Jeong, Seonghoon (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University)
Kim, Hyunsoo (School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center, Chonbuk National University)
Lee, Sung-Nam (Department of Nano-Optical Engineering, Korea Polytechnic University)
Abstract
We analyzed the deep-trap states of GaN/InGaN ultraviolet light-emitting diodes (UV LEDs) before and after electrical stress. After electrical stress, the light output power dropped by 5.5%, and the forward leakage current was increased. The optical degradation mechanism could be explained based on the space-charge-limited conduction (SCLC) theory. Specifically, for the reference UV LED (before stress), two sets of deep-level states which were located 0.26 and 0.52 eV below the conduction band edge were present, one with a density of $2.41{\times}10^{16}$ and the other with a density of $3.91{\times}10^{16}cm^{-3}$. However, after maximum electrical stress, three sets of deep-level states, with respective densities of $1.82{\times}10^{16}$, $2.32{\times}10^{16}cm^{-3}$, $5.31{\times}10^{16}cm^{-3}$ were found to locate at 0.21, 0.24, and 0.50 eV below the conduction band. This finding shows that the SCLC theory is useful for understanding the degradation mechanism associated with defect generation in UV LEDs.
Keywords
Ultraviolet; Light-emitting diodes; Degradation; Deep-level states; Space-charge-limited conduction; Leakage current; Reliability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Osaka, Y. Ohno, S. Kishimoto, K. Maezawa and T. Mizutani, Appl. Phys. Lett. 87, 222112 (2005).   DOI
2 A. Hierro, S. A. Ringel, M. Hansen, J. S. Speck, U. K. Mishra and S. P. Denbaars, Appl. Phys. Lett. 77, 1499 (2000).   DOI
3 T. Mattila and R. M. Nieminen, Phys. Rev. B 54, 16676 (1996).   DOI
4 A. Mao, J. Cho, Q. Dai, E. F. Schubert, J. K. Son and Y. Park, Appl. Phys. Lett. 98, 023503 (2011).   DOI
5 V. Kuksenkov, H. Temkin, A. Osinsky, R. Gaska and M. A. Khan, Appl. Phys. Lett. 72, 1365 (1998).   DOI
6 J. Toivonen, T. Hakkarainen, M. Sopanen, H. Lipsanen, J. Oila and K. Saarinen, Appl. Phys. Lett. 82, 40 (2003).   DOI
7 R. Armitage, W. Hong, Q. Yang, H. Feick, J. Gebauer, E. R. Weber, S. Hautakangas and K. Saarinen, Appl. Phys. Lett. 82, 3457 (2003).   DOI
8 M. W. Bayerl, M. S. Brandt, O. Ambacher, M. Stutzmann, E. R. Glaser, R. L. Henry, A. E. Wickenden, D. D. Koleske, T. Suski, I. Grzegory and S. Porewski, Phys. Rev. B 63, 125203 (2001).   DOI
9 Q. Yan, A. Janotti, M. Scheffler and C. G. van de Walle, Appl. Phys. Lett. 100, 142110 (2012).   DOI
10 L. Lymperakis, J. Neugebauer, M. Albrecht, T. Remmele and H. P. Strunk, Phys. Rev. Lett. 93, 196401 (2004).   DOI
11 H. Hirayama, S. Fujikawa, N. Noguchi, J. Norimatsu, T. Takano, K. Tsubaki and N. Kamata, Phys. Stat. Sol. (a) 206, 1176 (2009).   DOI
12 U. Kasten, D. Beyersmann, J. Dahm-Daphi and A. Harwig, Mutat. Res. 336, 143 (1995).   DOI
13 H. Kudo, M. Sawai, Y. Suzuki, X. Wang, T. Gessei, D. Takahasho, T. Arakawa and K. Mitsubayashi, Sens. Actuator B-Chem. 147, 676 (2010).   DOI
14 R. Nana, P. Gnanachchelvi, M. A. Awaah, M. H. Gowda, A. M. Kamto, Y.Wang, M. Park and K. Das, Phys. Stat. Sol. (a) 207, 1489 (2010).   DOI
15 E. Jung, S. Jeong, J. H. Ryou and H. Kim, J. Nanosci. Nanotechnol. 17, 7339 (2017).   DOI
16 L. R. Trevisanello, M. Meneghini, G. Mura, C. Sanna, S. Buso, G. Spiazzi, M. Vanzi, G. Meneghesso and E. Zanoni, Proc. SPIE 6669, 666913 (2007).
17 L. Trevisanello, M. Meneghini, G. Mura, M. Vanzi, M. Pavesi, G. Meneghesso and E. Zanoni, IEEE Trans. Device Mater. Reliab. 8, 304 (2008).   DOI
18 E. Jung, M. Kim and H. Kim, IEEE Trans. Electron. Dev. 60, 186 (2013).   DOI
19 M. Meneghesso and E. Zanoni, IEEE Trans. Electron Dev. 53, 2981 (2006).   DOI
20 W. Shockley and Bell Syst. Tech. J. 28, 435 (1949).   DOI
21 H. Kim, J. Cho, Y. Park and T. Y. Seong, Appl. Phys. Lett. 92, 092115 (2008).   DOI
22 D. Zhu, A. N. Noemaun, J. Kim, E. F. Schubert, M. H. Crawford and D. D. Koleske, Appl. Phys. Lett. 94, 081113 (2009).   DOI
23 M. Meneghini, A. Tazzoli, G. Mura, G. Meneghesso and E. Zanoni, IEEE Trans. Electron Dev. 57, 108 (2010).   DOI
24 J. Close, J. Ip and K. H. Lam, Renew. Energy 31, 1657 (2006).   DOI
25 J. L. Shie, C. H. Lee, C. S. Chiou, C. T. Chang, C. C. Chang and C. Y. Chang, J. Hazard. Mater. 155, 164 (2008).   DOI
26 M. Menegehini, L. R. Trevisanello, G. Meneghesso and E. Zanoni, IEEE Trans. Device Mater. Reliab. 8, 323 (2008).   DOI
27 M. A. Khan, Phys. Stat. Sol. (a) 203, 1764 (2006).   DOI
28 L. X. Zhao, E. J. Thrush, C. J. Humphreys and W. A. Phillips, J. Appl. Phys. 103, 024501 (2008).   DOI
29 G. Meneghesso, S. Levada, R. Pierobon, F. Rampazzo, E. Zanoni, A. Cavallini, A. Castaldini, G. Scamarcio, S. Du and I. Eliasevich, in IEDM Tech. Dig. 103 (2002).
30 E. Jung, J. H. Ryou, C. H. Hong and H. Kim, J. Electrochem. Soc. 158, H132 (2011).   DOI
31 R. Mueller-Mach, G. Mueller, M. Krames and T. Trottier, IEEE J. Sel. Top. Quantum Electron. 8, 339 (2002).   DOI
32 M. Meneghini, M. laGrassa, S. Vaccari, B. Galler, R. Zeisel, P. Drechsel, B. Hahn, G. Meneghesso and E. Zanoni, Appl. Phys. Lett. 104, 113505 (2014).   DOI
33 L. Hirsch and A. S. Barriere, J. Appl. Phys. 94, 5014 (2003).   DOI
34 A. Rose, Phys. Rev. 97, 1538 (1955).   DOI
35 M. A. Lambert and P. Mark, Current Injection in Solids (Academic Press, New York, 1970).