• Title/Summary/Keyword: UMAT

Search Result 58, Processing Time 0.02 seconds

A Semi-Implicit Integration for Rate-Dependent Plasticity with Nonlinear Kinematic Hardening (비선형 이동경화를 고려한 점소성 모델의 내연적 적분)

  • Yoon, Sam-Son;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1562-1570
    • /
    • 2003
  • The prediction of the inelastic behavior of the structure is an essential part of reliability assessment procedure, because most of the failures are induced by the inelastic deformation, such as creep and plastic deformation. During decades, there has been much progress in understanding of the inelastic behavior of the materials and a lot of inelastic constitutive equations have been developed. The complexity of these constitutive equations generally requires a stable and accurate numerical method. The radial return mapping is one of the most robust integration scheme currently used. Nonlinear kinematic hardening model of Armstrong-Fredrick type has recovery term and the direction of kinematic hardening increment is not parallel to that of plastic strain increment. In this case, The conventional radial return mapping method cannot be applied directly. In this investigation, we expanded the radial return mapping method to consider the nonlinear kinematic hardening model and implemented this integration scheme into ABAQUS by means of UMAT subroutine. The solution of the non-linear system of algebraic equations arising from time discretization with the generalized midpoint rule is determined using Newton method and bisection method. Using dynamic yield condition derived from linearization of flow rule, the integration scheme for elastoplastic and viscoplastic constitutive model was unified. Several numerical examples are considered to demonstrate the efficiency and applicability of the present method.

Modified Gurson Model to Describe Non-linear Compressive Behaviour of Polyurethane Foam with Considering Density Effect (폴리우레탄 폼의 비선형 압축거동을 모사하기 위한 밀도 영향이 고려된 수정 Gurson 모델의 제안)

  • Lee, Jeong-Ho;Park, Seong-Bo;Kim, Seul-Kee;Bang, Chang-Seon;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.543-551
    • /
    • 2015
  • Polyurethane Foam(PUF), a outstanding thermal insulation material, is used for various structures as being composed with other materials. These days, PUF composed with glass fiber, Reinforced PUF(R-PUF), is used for a insulation system of LNG Carrier and performs function of not only the thermal insulation but also a structural member for compressive loads like a sloshing load. As PUF is a porous material made by mixing and foaming, mechanical properties depend on volume fraction of voids which is a dominant parameter on density. Thus, In this study, density is considered as the effect parameter on mechanical properties of Polyurethane Foam, and mechanical behavior for compression of the material is described by using modified Gurson damage model.

Elastic-Damage Constitutive Model for Nonlinear Tensile Behavior of Polymeric Foam (폴리머 폼의 비선형 인장거동을 모사하기 위한 기공이 고려된 손상 탄성 구성방정식)

  • Kwon, Sun-Beom;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.4
    • /
    • pp.191-197
    • /
    • 2018
  • This paper details the development of an isotropic elastic-damage constitutive model for polymeric foam based on irreversible thermodynamics to consider the growth and coalescence of voids. The constitutive equations describe the material behavior sustaining unilateral damage. To facilitate finite element analysis, the material properties for specific types of polymeric foams are applied to the developed model; the model is then implemented in ABAQUS as a user-defined material subroutine. To validate the developed damage model, the simulated results are compared to the results of a series of tensile tests on various polymeric foams. The proposed damage model can be utilized to further research on continuum damage mechanics and finite element analysis of polymeric foams in computational engineering.

Prediction and Evaluation of Progressive Failure Behavior of CFRP using Crack Band Model Based Damage Variable (Crack Band Model 기반 손상변수를 이용한 탄소섬유강화 복합재료 적층판의 점진적 파손 거동 예측 및 검증)

  • Yoon, Donghyun;Kim, Sangdeok;Kim, Jaehoon;Doh, Youngdae
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.258-264
    • /
    • 2019
  • In this paper, a progressive failure analysis method was developed using the Hashin failure criterion and crack band model. Using the failure criterion, the failure initiation was evaluated. If the failure initiation is occurred, the damage variables at each failure modes (fiber tension & compression, matrix tension & compression) was calculated according to linear softening degradation behavior and the variables are used to derive the damaged stiffness matrix. The damaged stiffness matrix is reflected to damaged material and the progressive failure analysis is continued until the damage variables to be 1 that complete failure of material. A series of processes were performed using FE commercial code ABAQUS with user defined material subroutine (UMAT). To evaluate the proposed progressive failure model, the experimental results of open hole composite laminate tests was compared with numerical result. Using digital image correlation system, the strain behavior also was compared. The proposed numerical results were coincided well with the experimental results.

Effects of Age and Type of Stimulus on the Cortical Auditory Evoked Potential in Healthy Malaysian Children

  • Mukari, Siti Zamratol-Mai Sarah;Umat, Cila;Chan, Soon Chien;Ali, Akmaliza;Maamor, Nashrah;Zakaria, Mohd Normani
    • Korean Journal of Audiology
    • /
    • v.24 no.1
    • /
    • pp.35-39
    • /
    • 2020
  • Background and Objectives: The cortical auditory evoked potential (CAEP) is a useful objective test for diagnosing hearing loss and auditory disorders. Prior to its clinical applications in the pediatric population, the possible influences of fundamental variables on the CAEP should be studied. The aim of the present study was to determine the effects of age and type of stimulus on the CAEP waveforms. Subjects and Methods: Thirty-five healthy Malaysian children aged 4 to 12 years participated in this repeated-measures study. The CAEP waveforms were recorded from each child using a 1 kHz tone burst and the speech syllable /ba/. Latencies and amplitudes of P1, N1, and P2 peaks were analyzed accordingly. Results: Significant negative correlations were found between age and speech-evoked CAEP latency for each peak (p<0.05). However, no significant correlations were found between age and tone-evoked CAEP amplitudes and latencies (p>0.05). The speech syllable /ba/ produced a higher mean P1 amplitude than the 1 kHz tone burst (p=0.001). Conclusions: The CAEP latencies recorded with the speech syllable became shorter with age. While both tone-burst and speech stimuli were appropriate for recording the CAEP, significantly bigger amplitudes were found in speech-evoked CAEP. The preliminary normative CAEP data provided in the present study may be beneficial for clinical and research applications in Malaysian children.

Effects of Age and Type of Stimulus on the Cortical Auditory Evoked Potential in Healthy Malaysian Children

  • Mukari, Siti Zamratol-Mai Sarah;Umat, Cila;Chan, Soon Chien;Ali, Akmaliza;Maamor, Nashrah;Zakaria, Mohd Normani
    • Journal of Audiology & Otology
    • /
    • v.24 no.1
    • /
    • pp.35-39
    • /
    • 2020
  • Background and Objectives: The cortical auditory evoked potential (CAEP) is a useful objective test for diagnosing hearing loss and auditory disorders. Prior to its clinical applications in the pediatric population, the possible influences of fundamental variables on the CAEP should be studied. The aim of the present study was to determine the effects of age and type of stimulus on the CAEP waveforms. Subjects and Methods: Thirty-five healthy Malaysian children aged 4 to 12 years participated in this repeated-measures study. The CAEP waveforms were recorded from each child using a 1 kHz tone burst and the speech syllable /ba/. Latencies and amplitudes of P1, N1, and P2 peaks were analyzed accordingly. Results: Significant negative correlations were found between age and speech-evoked CAEP latency for each peak (p<0.05). However, no significant correlations were found between age and tone-evoked CAEP amplitudes and latencies (p>0.05). The speech syllable /ba/ produced a higher mean P1 amplitude than the 1 kHz tone burst (p=0.001). Conclusions: The CAEP latencies recorded with the speech syllable became shorter with age. While both tone-burst and speech stimuli were appropriate for recording the CAEP, significantly bigger amplitudes were found in speech-evoked CAEP. The preliminary normative CAEP data provided in the present study may be beneficial for clinical and research applications in Malaysian children.

Numerical Assessment of Tensile Strain Capacity for X80 Line Pipe Using GTN Model (GTN 모델을 이용한 X80 라인파이프의 인장 변형성능 해석)

  • Yoon, Young-Cheol;Kim, Ki-Seok;Lee, Jae Hyuk;Cho, Woo-Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.979-990
    • /
    • 2016
  • This study presents a nonlinear finite element procedure involving a phenomenological model to validate the tensile strain capacity of the X80 line pipe developed for the strain-based design purpose. The procedure is based on the Gurson-Tvergaard-Needleman (GTN) model, which models nucleation, growth and coalescence of void volume fraction occurred inside a metal. In this study, the user-defined material module (UMAT) is implemented in the commercial finite element platform ABAQUS and is applied to the nonlinear damage analysis of steel specimens. Material parameters for the nonlinear damage analysis of base and weld metals are calibrated from numerical simulations for the tensile tests of round bar and full thickness specimens. They are then employed in the numerical simulations for SENT (Single Edge Notch Tension) test and CWPT (Curved Wide Plate Test) and in the simulations, the tensile strain capacities are naturally evaluated. Comparison of the numerical results with the experimental results and the conventional empirical formulae shows that the proposed numerical procedure can fairly well predict the tensile strain capacity of X80 line pipe. So, it is readily expected to be effectively applied to the strain-based design procedure.

The Response Prediction of Flexible Pavements Considering Nonlinear Pavement Foundation Behavior (비선형 포장 하부 거동을 고려한 연성 포장의 해석)

  • Kim, Min-Kwan
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.165-175
    • /
    • 2009
  • With the current move towards adopting mechanistic-empirical concepts in the design of pavement structures, state-of-the-art mechanistic analysis methodologies are needed to determine accurate pavement responses, such as stress, strain, and deformation. Previous laboratory studies of pavement foundation geomaterials, i.e., unbound granular materials used in base/subbase layers and fine-grained soils of a prepared subgrade, have shown that the resilient responses followed by nonlinear, stress-dependent behavior under repeated wheel loading. This nonlinear behavior is commonly characterized by stress-dependent resilient modulus material models that need to be incorporated into finite element (FE) based mechanistic pavement analysis methods to predict more realistically predict pavement responses for a mechanistic pavement analysis. Developed user material subroutine using aforementioned resilient model with nonlinear solution technique and convergence scheme with proven performance were successfully employed in general-purpose FE program, ABAQUS. This numerical analysis was investigated in predicted critical responses and domain selection with specific mesh generation was implemented to evaluate better prediction of pavement responses. Results obtained from both axisymmetric and three-dimensional (3D) nonlinear FE analyses were compared and remarkable findings were described for nonlinear FE analysis. The UMAT subroutine performance was also validated with the instrumented full scale pavement test section study results from the Federal Aviation Administration's National Airport Pavement Test Facility (FAA's NAPTF).

  • PDF