Browse > Article
http://dx.doi.org/10.7734/COSEIK.2015.28.5.543

Modified Gurson Model to Describe Non-linear Compressive Behaviour of Polyurethane Foam with Considering Density Effect  

Lee, Jeong-Ho (Department of Naval Architecture and Ocean Engineering, Pusan National University)
Park, Seong-Bo (Department of Naval Architecture and Ocean Engineering, Pusan National University)
Kim, Seul-Kee (Department of Naval Architecture and Ocean Engineering, Pusan National University)
Bang, Chang-Seon (Samsung Heavy Industries)
Lee, Jae-Myung (Department of Naval Architecture and Ocean Engineering, Pusan National University)
Publication Information
Journal of the Computational Structural Engineering Institute of Korea / v.28, no.5, 2015 , pp. 543-551 More about this Journal
Abstract
Polyurethane Foam(PUF), a outstanding thermal insulation material, is used for various structures as being composed with other materials. These days, PUF composed with glass fiber, Reinforced PUF(R-PUF), is used for a insulation system of LNG Carrier and performs function of not only the thermal insulation but also a structural member for compressive loads like a sloshing load. As PUF is a porous material made by mixing and foaming, mechanical properties depend on volume fraction of voids which is a dominant parameter on density. Thus, In this study, density is considered as the effect parameter on mechanical properties of Polyurethane Foam, and mechanical behavior for compression of the material is described by using modified Gurson damage model.
Keywords
polyurethane foam(PUF); material constitutive model; ABAQUS user-defined material subroutine(UMAT);
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Aravas, N. (1987) On The Numerical Integration of a Class Of Pressure-Dependent Plasticity Models, Int. J. Num. Methods Eng., 24, pp.1395-1416.   DOI   ScienceOn
2 Degenstein, N.J. (2007) Spatially Resolved Species and Temperature Profiles in the Catalytic Partial Oxidation of Methane and Ethane, Ph.D. thesis, University of Minnesota, 421 Washington Ave. S.E.
3 Fabrice, S.-M., Laurent, C., Cavaille, J.-Y. Emanuelle, C. (2006) Mechanical Properties of High Density Polyurethane Foams: I. Effect of the Density, Composit. Sci. & Tech., 66(15), pp.2700-2708.   DOI   ScienceOn
4 Ihab, G., Valery, P., Raouf, I., Emmanuel, A. (2012) Temperature Effect on Non-Stationary Compressive Loading Response of Polymethacrylimide Solid Foam, Compos. Struct., 94, pp.3052-3063.   DOI
5 Lee, C.S., Kim, J.H., Kim, S.K., Ryu, D.M., Lee, J.M. (2015) Initial and Progressive Failure Analyses for Composite Laminates using Puck Failure Criterion and Damage-coupled Finite Element Method, Compos. Struct., 121, pp.406-419.   DOI
6 Lee, C.S., Kim, M.S., Park, S.B., Kim, J.H., Bang, C.S., Lee, J.M. (2015) A Temperature- and Strain-Rate-Dependent Isotropic Elasto-Viscoplastic Model for Glass-Fiber-Reinforced Polyurethane Foam, Mater. & Design, 84, pp.163-172.   DOI
7 Lee, S.J., Yoon, Y.C., Cho, W.Y., Yu, S.M., Zi, G.S. (2009) Large Deformation Inelastic Analysis of API-X80 Steel Linepipes, J. Comput. Struct. Eng. Inst. Korea, 22(4), pp.363-370.
8 Luo, H., Zhang, Y., Wang, B., Lu, H. (2010) Characterization of the Compressive behavior of Glass Fiber Reinforced Polyurethane Foam at Different Strain Rates, J. Offshore Mech. & Arctic Eng., 132(2), 021301.   DOI
9 Mclntyre, A., Anderton, G.E. (1979) Fracture Properties of a Rigid Polyurethane Foam over a Range of Densities, Polymer, 20(2), pp.247-253.   DOI
10 Mohamed, A., Guenael, G., Philippe, D.S., Delphine, S. (2013) Numerical Integration of an Advanced Gurson Model for Shear Loading: Application to the Blanking Process, Comput. Mater. Sci., 72, pp.62-67.   DOI
11 Siegmann, A., Kenig, S., Alperstein, D., Narkis, M. (1983) Mechanical Behavior of Reinforced Polyurethane Foams, Polymer Composites, 3(2), pp.113-119.
12 Thirumal, M., Dipak, K., Nikhil, K., Singha, B.S., Manjunath, Y.P.N. (2008) Effect of Foam Density on the Properties of Water Blown Rigid Polyurethane Foam, J. Appl. Polymer Sci., 108, pp.1810-1817.   DOI
13 Tvergaard, V., Needleman, A. (1984) Analysis of the Cup-Cone Fracture in a Round Tensile Bar, Acta Metallurgica, 32(1), pp.157-169.   DOI
14 Yang, S.Y. (2010) Conversion of ABAQUS user Material Subroutines, J. Comput. Struct. Eng. Inst. Korea, 23(6), pp.635-640.