DOI QR코드

DOI QR Code

Numerical Assessment of Tensile Strain Capacity for X80 Line Pipe Using GTN Model

GTN 모델을 이용한 X80 라인파이프의 인장 변형성능 해석

  • Received : 2016.05.16
  • Accepted : 2016.09.26
  • Published : 2016.12.01

Abstract

This study presents a nonlinear finite element procedure involving a phenomenological model to validate the tensile strain capacity of the X80 line pipe developed for the strain-based design purpose. The procedure is based on the Gurson-Tvergaard-Needleman (GTN) model, which models nucleation, growth and coalescence of void volume fraction occurred inside a metal. In this study, the user-defined material module (UMAT) is implemented in the commercial finite element platform ABAQUS and is applied to the nonlinear damage analysis of steel specimens. Material parameters for the nonlinear damage analysis of base and weld metals are calibrated from numerical simulations for the tensile tests of round bar and full thickness specimens. They are then employed in the numerical simulations for SENT (Single Edge Notch Tension) test and CWPT (Curved Wide Plate Test) and in the simulations, the tensile strain capacities are naturally evaluated. Comparison of the numerical results with the experimental results and the conventional empirical formulae shows that the proposed numerical procedure can fairly well predict the tensile strain capacity of X80 line pipe. So, it is readily expected to be effectively applied to the strain-based design procedure.

본 연구는 변형률 기반 설계를 위해 개발된 X80 라인파이프의 인장 변형성능을 검증하기 위해 금속의 비선형 거동을 해석할 수 있는 대표적 경험적인 모델인 GTN (Gurson-Tvergaard-Needleman) 모델을 이용한 비선형 유한요소 해석기법을 제시한다. GTN 모델은 재하과정중 금속 내부에서 발생하는 공극의 생성, 성장, 합체에 대한 모델링을 통해 재료의 손상거동을 묘사하는데, 본 연구에서는 GTN 모델에 대한 사용자 정의 재료모델을 작성하고 상용 유한요소해석 프로그램인 ABAQUS에 연동시켜 강재의 비선형 손상거동을 해석하였다. 비선형 손상해석을 위한 모재와 용접용 재료의 재료상수는 원형봉과 전두께 시편에 대한 인장시험 결과를 수치모사하여 결정하였으며, 결정된 재료상수를 이용하여 SENT (Single Edge Notch Tension) 시험과 CWPT (Curved Wide Plate Test)를 수치모사하였다. 수치해석 결과로부터 인장 변형성능을 산정하고 이를 시험결과 및 기존의 경험공식과 비교한 결과 본 연구에서 개발한 수치기법이 X80 라인파이프 부재의 인장 변형성능을 신뢰도 높게 평가하는 것을 확인하였으며, 결과적으로 변형률 기반 설계에 효과적으로 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Acharyya, S. and Dhar, S. (2008). "A complete GTN model for prediction of ductile failure of pipe." Journal of Materials Science, Vol. 43, No. 6, pp. 1897-1909. https://doi.org/10.1007/s10853-007-2369-0
  2. API Specification 5L (2012). Specification for Line Pipe, 45th edition, December 2012.
  3. Aravas, N. (1987). "On the numerical integration of a class of pressure-dependent plasticity models." International Journal for Numerical Methods in Engineering, 24, pp. 1395-1416. https://doi.org/10.1002/nme.1620240713
  4. Fairchild, D. P., Cheng, W., Ford, S. J., Minnaar, K., Biery, N. E., Kumar, A. and Nissley, N. E. (2007). "Recent advances in curved wide plate testing and implications for strain-based design." Proceedings of the Seventeenth International Offshore and Polar Engineering Conference, Lisbon, pp. 3013-3022.
  5. Franklin, A. G. (1969). "Comparison between a quantitative microscope and chemical methods for assessment of non-metallic inclusions." Iron and Steel Institute, 207, pp. 181-186.
  6. Gurson, A. L. (1977). "Continuum theory of ductile rupture by void nucleation and growth : Part-1 Yield criteria and flow rules for porous ductile media." Engineering Material and Technology, 99, pp. 2-15. https://doi.org/10.1115/1.3443401
  7. Lee, S. J., Yoon, Y. C., Cho, W. Y., Yu, S. M. and Zi, G. (2009). "Large deformation inelastic analysis of API-X80 steel linepipes." J. Comput. Struct. Eng., Vol. 22, No. 4, pp. 363-370 (in Korean).
  8. Liu, M. and Wang, Y. Y. (2006). "Applying gurson type of damage models to low constraint tests of high strength steels and welds." Proceedings of the 6th International Pipeline Conference, Calgary, pp. 1-8.
  9. Liu, M., Wang, Y. Y., Horsley, D. and Nanney, S. (2012b). "Multi-tier tensile strain models for strain-based design part 3-Model evaluation against experimental data." Proceedings of the 9th International Pipeline Conference, Paper No. IPC2012-90660, Calgary, pp. 427-438.
  10. Liu, M., Wang, Y. Y., Song, Y., Horsley, D. and Nanney, S. (2012a). "Multi-tier tensile strain models for strain-based design part 2-Development and formulation of tensile strain capacity models." Proceedings of the 9th International Pipeline Conference, Paper No. IPC2012-90659, Calgary, pp. 415-425.
  11. McClitock, F. A. (1968). "A criterion for ductile fracture by growth of holes." Journal of Applied Mechanics, 35, pp. 363-371. https://doi.org/10.1115/1.3601204
  12. Minnaar, K., Gioielli, P. C., Macia, M. L., Bardi, F. and Biery, N. E. (2007). "Predictive FEA modeling of pressurized full-scale tests." Proceedings of the Seventeenth International Offshore and Polar Engineering Conference, Lisbon, pp. 3114-3120.
  13. PRCI (Pipeline Research Council International) Report (2011). Second generation models for strain-based design (Contract PRABD-1-Project 2).
  14. Seo, D. H., Yoo, J. Y., Song, W. H., Cho, W. Y. and Kang, K. B. (2009). "Development of X80/X100 linepipe steel plates and pipes for strain based design pipeline." Proceedings of the Nineteenth International Offshore and Polar Engineering Conference, Osaka, pp. 61-66.
  15. Tvergaard, V. and Needleman, A. (1984). "Analysis of the cup-cone fracture in a round tensile bar." Acta Metallurgica, Vol. 32, No. 1, pp. 157-169. https://doi.org/10.1016/0001-6160(84)90213-X
  16. Wang, Y. Y., Horsley, D. and Stephens, M. (2008). "Preliminary analysis of tensile strain capacity of full-scale pipe tests with internal pressure." Proceedings of the Eighteenth International Offshore and Polar Engineering Conference, Vancouver, pp. 40-47.
  17. Wang, Y. Y., Liu, M. and Song, Y. (2012b). Tensile strain models for strain-based design of pipelines, ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, Rio de Janeiro, pp. 3246-3253.
  18. Wang, Y. Y., Liu, M., Zhang F., Horsley, D. and Nanney, S. (2012a). "Multi-tier tensile strain models for strain-based design part 1-Fundamental basis." Proceedings of the 9th International Pipeline Conference, Paper No. IPC2012-90690, Calgary, pp. 447-458.
  19. Ostby, E. (2015). Strain-based design of pipelines-the important role of numerical modelling in fracture assessments, Proceedings of the Twenty-fifth International Ocean and Polar Engineering Conference, Hawaii, pp.543-550.
  20. Ostby, E., Hauge, M., Levold, E., Sandvik, A., Nyhus, B. and Thaulow, C. (2008). "Strain capacity of SENT specimens-Influence of weld metal mismatch and ductile tearing resistance." Proceedings of the Eighteenth International Offshore and Polar Engineering Conference, Vancouver, pp. 64-71.