The Response Prediction of Flexible Pavements Considering Nonlinear Pavement Foundation Behavior

비선형 포장 하부 거동을 고려한 연성 포장의 해석

  • Published : 2009.03.15

Abstract

With the current move towards adopting mechanistic-empirical concepts in the design of pavement structures, state-of-the-art mechanistic analysis methodologies are needed to determine accurate pavement responses, such as stress, strain, and deformation. Previous laboratory studies of pavement foundation geomaterials, i.e., unbound granular materials used in base/subbase layers and fine-grained soils of a prepared subgrade, have shown that the resilient responses followed by nonlinear, stress-dependent behavior under repeated wheel loading. This nonlinear behavior is commonly characterized by stress-dependent resilient modulus material models that need to be incorporated into finite element (FE) based mechanistic pavement analysis methods to predict more realistically predict pavement responses for a mechanistic pavement analysis. Developed user material subroutine using aforementioned resilient model with nonlinear solution technique and convergence scheme with proven performance were successfully employed in general-purpose FE program, ABAQUS. This numerical analysis was investigated in predicted critical responses and domain selection with specific mesh generation was implemented to evaluate better prediction of pavement responses. Results obtained from both axisymmetric and three-dimensional (3D) nonlinear FE analyses were compared and remarkable findings were described for nonlinear FE analysis. The UMAT subroutine performance was also validated with the instrumented full scale pavement test section study results from the Federal Aviation Administration's National Airport Pavement Test Facility (FAA's NAPTF).

역학적 경험적 포장 설계법을 도입하려는 현재의 연구추세에 발 맞추어 정확한 응력, 변형률, 변형을 기초로 포장구조체를 해석하기 위한 역학적 접근방법이 필요한 시점이다. 기존의 실험결과에 따르면 연성포장 구조의 기층에 이용되는 자갈과 노상층에 이용되는 노상토등의 포장 하부재료는 반복하중 조건하에서 비선형 회복탄성계수의 특징을 따르는 것으로 나타났다. 이 비선형 거동은 재료의 현재 응력에 의한 회복탄성계수 모델로 나타나질 수 있으며 정확한 해를 구할 수 있는 역학적 방법중의 하나인 유한요소 해석 방법에 적용되어 질 수 있다. 이 연구에서는 비선형 해석기법과 효과적인 해 수렴기법이 구현된 재료 모델 부 프로그램을 범용 유한요소 프로그램의 하나인 아바쿠스에 적용시켰다. 이 수치해석 방법에는 더 정확한 해를 찾기 위한 체눈분할에 의해 만들어진 유한요소 모델이 이용되었다. 이런 일련의 방법들에 의한 포장구조체의 해석결과, 2차원과 3차원 비선형 유한요소 해석의 결과가 큰 차이를 보이는 것으로 나타났다. 또한, 사용된 부 프로그램은 미연방 항공국 공항 시험포장에서 측정되어진 결과 값에 의해 비교 검증되었다.

Keywords

References

  1. Brown, S.F. and Pappin, J.W. (1981). "Analysis of Pavements with Granular Bases." Transportation Research Record, 810, TRB, National Research Council, Washington, D.C., pp.17-23.
  2. Duncan, J.M., Monismith, C.L., and Wilson, E.L. (1968). "Finite Element Analyses of Pavements." Highway Research Record, 228, TRB, National Research Council, Washington, D.C., pp.18-33.
  3. Gopalakrishnan, K. (2004). Performance Analysis of Airport Flexible Pavements Subjected to New Generation Aircraft, Ph.D. Dissertation, University of Illinois, Urbana, IL
  4. Hibbit, Karlsson & Sorensen, Inc. (2005). ABAQUS/standard User's Manual, Version 6.5, Hibbit, Karlsson & Sorensen, Inc., Pawtucket, R.I.
  5. Hjelmstad, K.D. and Taciroglu, E. (2000). "Analysis and Implementation of Resilient Modulus Models for Granular Solids." Journal of Engineering Mechanics, ASCE, Vol. 126, No.8, pp. 821-830. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:8(821)
  6. Huang, Y.H. (2004). Pavement Analysis and Design, 2nd Edition, Pearson Prentice Hall, Pearson Education Inc., Upper Saddle River, New Jersey
  7. Saad, B., Mitri, H., and Poorooshasb, H. (2005). "Three-dimensional Dynamic Analysis of Flexible Conventional Pavement Foundation." Journal of Transportation Engineering, ASCE, Vol. 131, No. 6, pp. 460-469. https://doi.org/10.1061/(ASCE)0733-947X(2005)131:6(460)
  8. Schwartz, C.W. (2002). "Effect of Stress-dependent Base layer on the Superposition of Flexible Pavement Solutions." The International Journal of Geomechanics, Vol. 2, No. 3, pp. 331-352. https://doi.org/10.1061/(ASCE)1532-3641(2002)2:3(331)
  9. Thompson, M.R. and Elliott, R.P. (1985). "ILLI-PAVE Based Response Algorithms for Design of Conventional Flexible Pavements." Transportation Research Record, 1043, TRB, National Research Council, Washington, D.C., pp. 50-57.
  10. Thompson, M.R. and Robnett, Q.L. (1979). "Resilient Properties of Subgrade Soils." Journal of Transportation Engineering, ASCE, Vol. 105, No. TE1.
  11. Uzan, J. (1985). "Characterization of Granular Materials." Transportation Research Record, 1022, TRB, National Research Council, Washington D.C., pp. 52-59.
  12. Witczak, M.W., and Uzan, J. (1988). The Universal Airport Pavement Design System Rep. I Granular Material Characterization, Department of Civil Engineering, University of Maryland, College Park, MD.
  13. Zaghloul, S.M., and White, T.D. (1993). "Use of A Three-dimensional, Dynamic Finite Element Program for Analysis of Flexible Pavement." Transportation Research Record, 1388, TRB, National Research Council, Washington, D.C., pp. 60-69.