• Title/Summary/Keyword: UAV : Unmanned Aerial Vehicle

Search Result 797, Processing Time 0.023 seconds

Automatic Detection of Malfunctioning Photovoltaic Modules Using Unmanned Aerial Vehicle Thermal Infrared Images

  • Kim, Dusik;Youn, Junhee;Kim, Changyoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.6
    • /
    • pp.619-627
    • /
    • 2016
  • Cells of a PV (photovoltaic) module can suffer defects due to various causes resulting in a loss of power output. As a malfunctioning cell has a higher temperature than adjacent normal cells, it can be easily detected with a thermal infrared sensor. A conventional method of PV cell inspection is to use a hand-held infrared sensor for visual inspection. The main disadvantages of this method, when applied to a large-scale PV power plant, are that it is time-consuming and costly. This paper presents an algorithm for automatically detecting defective PV panels using images captured with a thermal imaging camera from an UAV (unmanned aerial vehicle). The proposed algorithm uses statistical analysis of thermal intensity (surface temperature) characteristics of each PV module to verify the mean intensity and standard deviation of each panel as parameters for fault diagnosis. One of the characteristics of thermal infrared imaging is that the larger the distance between sensor and target, the lower the measured temperature of the object. Consequently, a global detection rule using the mean intensity of all panels in the fault detection algorithm is not applicable. Therefore, a local detection rule was applied to automatically detect defective panels using the mean intensity and standard deviation range of each panel by array. The performance of the proposed algorithm was tested on three sample images; this verified a detection accuracy of defective panels of 97% or higher. In addition, as the proposed algorithm can adjust the range of threshold values for judging malfunction at the array level, the local detection rule is considered better suited for highly sensitive fault detection compared to a global detection rule. In this study, we used a panel area extraction method that we previously developed; fault detection accuracy would be improved if panel area extraction from images was more precise. Furthermore, the proposed algorithm contributes to the development of a maintenance and repair system for large-scale PV power plants, in combination with a geo-referencing algorithm for accurate determination of panel locations using sensor-based orientation parameters and photogrammetry from ground control points.

Assessment of Photochemical Reflectance Index Measured at Different Spatial Scales Utilizing Leaf Reflectometer, Field Hyper-Spectrometer, and Multi-spectral Camera with UAV (드론 장착 다중분광 카메라, 소형 필드 초분광계, 휴대용 잎 반사계로부터 관측된 서로 다른 공간규모의 광화학반사지수 평가)

  • Ryu, Jae-Hyun;Oh, Dohyeok;Jang, Seon Woong;Jeong, Hoejeong;Moon, Kyung Hwan;Cho, Jaeil
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1055-1066
    • /
    • 2018
  • Vegetation indices on the basis of optical characteristics of vegetation can represent various conditions such as canopy biomass and physiological activity. Those have been mostly developed with the large-scaled applications of multi-band optical sensors on-board satellites. However, the sensitivity of vegetation indices for detecting vegetation features will be different depending on the spatial scales. Therefore, in this study, the investigation of photochemical reflectance index (PRI), known as one of useful vegetation indices for detecting photosynthetic ability and vegetation stress, under the three spatial scales was conducted using multi-spectral camera installed in unmanned aerial vehicle (UAV),field spectrometer, and leaf reflectometer. In the leaf scale, diurnal PRI had minimum values at different local-time according to the compass direction of leaf face. It meant that each leaf in some moment had the different degree of light use efficiency (LUE). In early growth stage of crop, $PRI_{leaf}$ was higher than $PRI_{stands}$ and $PRI_{canopy}$ because the leaf scale is completely not governed by the vegetation cover fraction.In the stands and canopy scales, PRI showed a large spatial variability unlike normalized difference vegetation index (NDVI). However, the bias for the relationship between $PRI_{stands}$ and $PRI_{canopy}$ is lower than that in $NDVI_{stands}$ and $NDVI_{canopy}$. Our results will help to understand and utilize PRIs observed at different spatial scales.

Implementation of Agricultural Multi-UAV System with Distributed Swarm Control Algorithm into a Simulator (분산군집제어 알고리즘 기반 농업용 멀티 UAV 시스템의 시뮬레이터 구현)

  • Ju, Chanyoung;Park, Sungjun;Son, Hyoung Il
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.37-38
    • /
    • 2017
  • 최근 방제 및 예찰과 같은 농작업에 단일 UAV(Unmanned Aerial Vehicle)시스템이 적용되고 있지만, 가반하중과 체공시간 등 기존시스템의 문제가 점차 대두되면서 작업 시간을 보다 단축시키고 작업 효율을 극대화 할 수 있는 농업용 멀티 UAV시스템의 필요성이 증대되고 있다. 본 논문에서는 작업자가 다수의 농업용 UAV를 효과적으로 제어할 수 있는 분산군집제어 알고리즘을 제안하며 알고리즘 검증 및 평가를 위한 시뮬레이터를 소개한다. 분산군집제어는 UAV 제어 계층, VP(Virtual Point) 제어 계층, 원격제어 계층으로 이루어진 3계층 제어구조를 가진다. UAV 제어 계층에서 각 UAV는 point mass로 모델링 되는 VP의 이상적인 경로를 추종하도록 제어한다. VP 제어 계층에서 각 VP는 입력 $p_i(t)=u^c_i+u^o_i+u^{co}_i+u^h_i$-(1)을 받아 제어되는데 여기서, $u^c_i{\in}{\mathbb{R}}^3$는 VP 사이의 충돌방지제어, $u^o_i{\in}{\mathbb{R}}^3$는 장애물과의 충돌방지제어, $u^{co}_i{\in}{\mathbb{R}}^3$는 UAV 상호간의 협조제어, $u^h_i{\in}{\mathbb{R}}^3$는 작업자로부터의 원격제어명령이다. (1)의 제어입력에서 충돌방지제어는 각 $u^i_c:=-{\sum\limits_{j{\in}{\eta}_i}}{\frac {{\partial}{\phi}_{ij}^c({\parallel}p_i-p_j{\parallel})^T}{{\partial}p_i}}$-(2), $u^o_c:=-{\sum\limits_{r{\in}O_i}}{\frac {{\partial}{\phi}_{ir}^o({\parallel}p_i-p^o_r{\parallel})^T}{{\partial}p_i}}$-(3)로 정의되면 ${\phi}^c_{ij}$${\phi}^o_{ir}$는 포텐셜 함수를 나타낸다. 원격제어 계층에서 작업자는 햅틱 인터페이스를 통해 VP의 속도를 제어하게 된다. 이때 스케일변수 ${\lambda}$에 대하여 VP의 원격제어명령은 $u^t_i(t)={\lambda}q(t)$로 정의한다. UAV 시뮬레이터는 리눅스 환경에서 ROS(Robot Operating Systems)를 기반한 3차원 시뮬레이터인 Gazebo상에 구축하였으며, 마스터와 슬레이브 간의 제어 명령은 TCPROS를 통해 서로 주고받는다. UAV는 PX4 기반의 3DR Solo 모델을 사용하였으며 MAVROS를 통해 MAVLink 통신 프로토콜에 접속하여 UAV의 고도, 속도 및 가속도 등의 상태정보를 받을 수 있다. 현재 멀티 드론 시스템을 Gazebo 환경에 구축하였으며, 추후 시뮬레이터 상에 분산군집제어 알고리즘을 구현하여 검증 및 평가를 진행하고자 한다.

  • PDF

Construction of Precise Digital Terrain Model for Nonmetal Open-pit Mine by Using Unmanned Aerial Photograph (무인항공 사진촬영을 통한 비금속 노천광산 정밀 수치지형모델 구축)

  • Cho, Seong-Jun;Bang, Eun-Seok;Kang, Il-Mo
    • Economic and Environmental Geology
    • /
    • v.48 no.3
    • /
    • pp.205-212
    • /
    • 2015
  • We have verified applicability of UAV(Unmanned Aerial Vehicle) photogrammetry to a mining engineering. The test mine is a smectite mine located at Gyeongju city in Gyeongnam province, Koera. 448 photos over area of $600m{\times}380m$ were taken with overlapped manner using Cannon Mark VI equipped to multicopter DJI S1000, which were processed with AgiSoft Photoscan software to generate orthophoto and DEM model of the study area. photogrammetry data with 10 cm resolution were generated using 6 ground control positions, which were exported to the 3D geological modeling software to make a topographic surface object. Monitoring of amount of ore production and landsliding could be done with less than 1 hours photographing as well as low cost. A direct link between UAV photogrammetry and 3D geological modeling technology might increase productivity of a mine due to appling the topographical surface change immediately according to the mining operation.

Yield Prediction of Chinese Cabbage (Brassicaceae) Using Broadband Multispectral Imagery Mounted Unmanned Aerial System in the Air and Narrowband Hyperspectral Imagery on the Ground

  • Kang, Ye Seong;Ryu, Chan Seok;Kim, Seong Heon;Jun, Sae Rom;Jang, Si Hyeong;Park, Jun Woo;Sarkar, Tapash Kumar;Song, Hye young
    • Journal of Biosystems Engineering
    • /
    • v.43 no.2
    • /
    • pp.138-147
    • /
    • 2018
  • Purpose: A narrowband hyperspectral imaging sensor of high-dimensional spectral bands is advantageous for identifying the reflectance by selecting the significant spectral bands for predicting crop yield over the broadband multispectral imaging sensor for each wavelength range of the crop canopy. The images acquired by each imaging sensor were used to develop the models for predicting the Chinese cabbage yield. Methods: The models for predicting the Chinese cabbage (Brassica campestris L.) yield, with multispectral images based on unmanned aerial vehicle (UAV), were developed by simple linear regression (SLR) using vegetation indices, and forward stepwise multiple linear regression (MLR) using four spectral bands. The model with hyperspectral images based on the ground were developed using forward stepwise MLR from the significant spectral bands selected by dimension reduction methods based on a partial least squares regression (PLSR) model of high precision and accuracy. Results: The SLR model by the multispectral image cannot predict the yield well because of its low sensitivity in high fresh weight. Despite improved sensitivity in high fresh weight of the MLR model, its precision and accuracy was unsuitable for predicting the yield as its $R^2$ is 0.697, root-mean-square error (RMSE) is 1170 g/plant, relative error (RE) is 67.1%. When selecting the significant spectral bands for predicting the yield using hyperspectral images, the MLR model using four spectral bands show high precision and accuracy, with 0.891 for $R^2$, 616 g/plant for the RMSE, and 35.3% for the RE. Conclusions: Little difference was observed in the precision and accuracy of the PLSR model of 0.896 for $R^2$, 576.7 g/plant for the RMSE, and 33.1% for the RE, compared with the MLR model. If the multispectral imaging sensor composed of the significant spectral bands is produced, the crop yield of a wide area can be predicted using a UAV.

Automatic Building Modeling Method Using Planar Analysis of Point Clouds from Unmanned Aerial Vehicles (무인항공기에서 생성된 포인트 클라우드의 평면성 분석을 통한 자동 건물 모델 생성 기법)

  • Kim, Han-gyeol;Hwang, YunHyuk;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.973-985
    • /
    • 2019
  • In this paper, we propose a method to separate the ground and building areas and generate building models automatically through planarity analysis using UAV (Unmanned Aerial Vehicle) based point cloud. In this study, proposed method includes five steps. In the first step, the planes of the point cloud were extracted by analyzing the planarity of the input point cloud. In the second step, the extracted planes were analyzed to find a plane corresponding to the ground surface. Then, the points corresponding to the plane were removed from the point cloud. In the third step, we generate ortho-projected image from the point cloud ground surface removed. In the fourth step, the outline of each object was extracted from the ortho-projected image. Then, the non-building area was removed using the area, area / length ratio. Finally, the building's outer points were constructed using the building's ground height and the building's height. Then, 3D building models were created. In order to verify the proposed method, we used point clouds made using the UAV images. Through experiments, we confirmed that the 3D models of the building were generated automatically.

Replay Attack based Neutralization Method for DJI UAV Detection/Identification Systems (DJI UAV 탐지·식별 시스템 대상 재전송 공격 기반 무력화 방식)

  • Seungoh Seo;Yonggu Lee;Sehoon Lee;Seongyeol Oh;Junyoung Son
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.133-143
    • /
    • 2023
  • As drones (also known as UAV) become popular with advanced information and communication technology (ICT), they have been utilized for various fields (agriculture, architecture, and so on). However, malicious attackers with advanced drones may pose a threat to critical national infrastructures. Thus, anti-drone systems have been developed to respond to drone threats. In particular, remote identification data (R-ID)-based UAV detection and identification systems that detect and identify illegal drones with R-ID broadcasted by drones have been developed, and are widely employed worldwide. However, this R-ID-based UAV detection/identification system is vulnerable to security due to wireless broadcast characteristics. In this paper, we analyze the security vulnerabilities of DJI Aeroscope, a representative example of the R-ID-based UAV detection and identification system, and propose a replay-attack-based neutralization method using the analyzed vulnerabilities. To validate the proposed method, it is implemented as a software program, and verified against four types of attacks in real test environments. The results demonstrate that the proposed neutralization method is an effective neutralization method for R-ID-based UAV detection and identification systems.

Design of Multi-Mode Radar Signal Processor for UAV Detection (무인기 탐지를 위한 멀티모드 레이다 신호처리 프로세서 설계)

  • Lee, Seunghyeok;Jung, Yongchul;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.134-141
    • /
    • 2019
  • Radar systems are divided into the pulse Doppler (PD) radar and the frequency modulated continuous wave (FMCW) radar depending on the transmission waveform. In particular, the PD radar is advantageous for long-range target detection, and the FMCW radar is suitable for short-range target detection. In this paper, we present design and implementation results for a multi-mode radar signal processor (RSP) that can support both PD and FMCW radar systems to detect unmanned aerial vehicles (UAVs) at short distances as well as long distances. The proposed radar signal processor can be implemented based on Altera Cyclone-IV FPGA with 19,623 logic elements, 9,759 registers, and 25,190,400 memory bits. The logic elements and registers of the proposed radar signal processor are reduced by approximately 43% and 30%, respectively, compared to the sum of logic elements and registers of the conventional PD radar and FMCW radar signal processor.

Development of a Test Environment for Performance Evaluation of the Vision-aided Navigation System for VTOL UAVs (수직 이착륙 무인 항공기용 영상보정항법 시스템 성능평가를 위한 검증환경 개발)

  • Sebeen Park;Hyuncheol Shin;Chul Joo Chung
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.788-797
    • /
    • 2023
  • In this paper, we introduced a test environment to test a vision-aided navigation system, as an alternative navigation system when global positioning system (GPS) is unavailable, for vertical take-off and landing (VTOL) unmanned aerial system. It is efficient to use a virtual environment to test and evaluate the vision-aided navigation system under development, but currently no suitable equipment has been developed in Korea. Thus, the proposed test environment is developed to evaluate the performance of the navigation system by generating input signal modeling and simulating operation environment of the system, and by monitoring output signal. This paper comprehensively describes research procedure from derivation of requirements specifications to hardware/software design according to the requirements, and production of the test environment. This test environment was used for evaluating the vision-aided navigation algorithm which we are developing, and conducting simulation based pre-flight tests.

Development of Deep Learning Based Ensemble Land Cover Segmentation Algorithm Using Drone Aerial Images (드론 항공영상을 이용한 딥러닝 기반 앙상블 토지 피복 분할 알고리즘 개발)

  • Hae-Gwang Park;Seung-Ki Baek;Seung Hyun Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.71-80
    • /
    • 2024
  • In this study, a proposed ensemble learning technique aims to enhance the semantic segmentation performance of images captured by Unmanned Aerial Vehicles (UAVs). With the increasing use of UAVs in fields such as urban planning, there has been active development of techniques utilizing deep learning segmentation methods for land cover segmentation. The study suggests a method that utilizes prominent segmentation models, namely U-Net, DeepLabV3, and Fully Convolutional Network (FCN), to improve segmentation prediction performance. The proposed approach integrates training loss, validation accuracy, and class score of the three segmentation models to enhance overall prediction performance. The method was applied and evaluated on a land cover segmentation problem involving seven classes: buildings,roads, parking lots, fields, trees, empty spaces, and areas with unspecified labels, using images captured by UAVs. The performance of the ensemble model was evaluated by mean Intersection over Union (mIoU), and the results of comparing the proposed ensemble model with the three existing segmentation methods showed that mIoU performance was improved. Consequently, the study confirms that the proposed technique can enhance the performance of semantic segmentation models.