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Abstract
Cells of a PV (photovoltaic) module can suffer defects due to various causes resulting in a loss of power output. 

As a malfunctioning cell has a higher temperature than adjacent normal cells, it can be easily detected with a 
thermal infrared sensor. A conventional method of PV cell inspection is to use a hand-held infrared sensor for 
visual inspection. The main disadvantages of this method, when applied to a large-scale PV power plant, are 
that it is time-consuming and costly. This paper presents an algorithm for automatically detecting defective PV 
panels using images captured with a thermal imaging camera from an UAV (unmanned aerial vehicle). The 
proposed algorithm uses statistical analysis of thermal intensity (surface temperature) characteristics of each 
PV module to verify the mean intensity and standard deviation of each panel as parameters for fault diagnosis. 
One of the characteristics of thermal infrared imaging is that the larger the distance between sensor and target, 
the lower the measured temperature of the object. Consequently, a global detection rule using the mean intensity 
of all panels in the fault detection algorithm is not applicable. Therefore, a local detection rule was applied to 
automatically detect defective panels using the mean intensity and standard deviation range of each panel by 
array. The performance of the proposed algorithm was tested on three sample images; this verified a detection 
accuracy of defective panels of 97% or higher. In addition, as the proposed algorithm can adjust the range of 
threshold values for judging malfunction at the array level, the local detection rule is considered better suited for 
highly sensitive fault detection compared to a global detection rule. In this study, we used a panel area extraction 
method that we previously developed; fault detection accuracy would be improved if panel area extraction from 
images was more precise. Furthermore, the proposed algorithm contributes to the development of a maintenance 
and repair system for large-scale PV power plants, in combination with a geo-referencing algorithm for accurate 
determination of panel locations using sensor-based orientation parameters and photogrammetry from ground 
control points.
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1. Introduction

As a part of the Paris Agreement in December 2015, the 
international community agreed to “hold the increase in 
the global average temperature to well below 2°C” and to 
“pursue efforts to limit the temperature increase to 1.5°C”. 

This international response to climate change is scheduled 
to be implemented from 2020 onwards, by which time 
all signatories to the Paris Agreement must honor their 
collective commitment to curbing greenhouse gas emissions 
and adapting to climate change. In the years running up 
to this target date, they should establish energy strategies 
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to reduce pollution from fossil fuels, while meeting the 
globally increasing energy needs. In this context, South 
Korea identified the top 10 climate technologies with a view 
to developing key technologies to cope with climate change. 
Photovoltaic power generation is one of these 10 technologies 
and is emerging as a strategic technology for securing future 
energy for the country.

PV power generation systems have received significant 
attention as one of the promising renewable energy sources. 
However, PV panels used for collecting solar energy have an 
inherent disadvantage of efficiency degradation caused by 
the accumulation of dust or dirt as a result of their exposure 
to the natural environment. This leads to defects such as short 
circuits caused by corrosion of modules and blocking of cells. 
Therefore, regular inspection and constant maintenance 
and repair are essential for maintaining a stable power 
output. Visual inspection and output measurement methods 
can be used for fault diagnosis in PV panels with reduced 
output efficiency (Quater et al., 2014). However, given that 
many large-scale PV power plants will be constructed and 
operated in the future within the climate change response 
framework, large-scale PV power plant monitoring through 
visual inspection will be uneconomical in terms of time and 
expenses. For the case of the output measurement method, 
monitoring the output of each PV panel is a great challenge 
for large-scale PV power plants. Therefore, there is a need for 
the development of technologies to overcome the drawbacks 
of existing techniques. 

In general, a defective cell emits thermal energy and, 
thus, has a higher temperature compared to the surrounding 
normal cells. Therefore, a thermal imaging camera can be 
used to efficiently detect defective spots, even during plant 
operation. Hand-held thermal imagers have been widely used 
as a conventional method for detecting defective panels as 
part of PV power plant inspections (Bazilian et al., 2002). 
However, the technique would be time-consuming and 
expensive when applied to the inspection of a large-scale PV 
power plant.

Recently, a PV power plant monitoring technology has been 
developed that uses UAVs equipped with thermal imaging 
cameras (Buerhop and Scheuerpflug, 2014; Grimaccia et al., 
2015). This is a promising technology for monitoring large-

scale PV power plants as it can rapidly scan a large PV array 
field. At the current level of technology, however, detection 
of defective panels is through the visual assessment of the 
images captured by aerial photogrammetry, and the analysis 
of a large number of image frames is time-consuming. This 
can be addressed only by developing a method for automated 
fault detection by combining aerial photogrammetry with 
computer vision technology.

Two key methods are involved in the process of the 
automated detection of defective panels of a PV power 
plant from aerial thermal infrared images. The first is 
the method for automatically extracting the ROI (region 
of interest) of a PV array field from the given images. 
Tsanakas et al. (2015) and Rogotis et al. (2014) presented 
methods for extracting the ROI from terrestrial thermal 
infrared image sequences using the Canny edge operator 
(Canny, 1986) or image segmentation techniques 
(Gonzalez et al., 2004). More recently, Kim et al. (2016a, 
2016b) proposed an algorithm for panel area extraction 
from thermal infrared images captured with a UAV 
using the Canny edge operator and image segmentation 
techniques. They concluded that the area extraction 
method using the Canny edge operator did not lend itself 
well to creating a single polygon for the panel area due to 
noise within and outside the panels. In contrast, the image 
segmentation-based area extraction method was able to 
create polygons for individual panel areas, albeit limited by 
imperfect linearity. As such, while previous studies have 
not yet achieved optimal implementation of automated 
area extraction, they have demonstrated the possibility of 
developing automated panel area extraction, if improved 
computer vision technology becomes available.

The second key method is the establishment of the 
automatic diagnosis of defective panels based on extracted 
PV panel areas. Tsanakas et al. (2015) designed a method to 
identify the location of hot spot cells on a PV panel using the 
Canny edge operator. In the PV power plant maintenance and 
repair regime generally applied in South Korea, any panel 
containing defective cells is replaced in its entirety. Hence, 
the algorithm should focus on diagnosing the function 
or malfunction of each panel rather than identifying the 
locations of hot spot cells within a panel. Similarly, it is not 
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necessary to have high resolution images that identify each 
cell; the outline of a PV panel and the presence or absence of 
hot spots are sufficient for the rapid inspection of a large-scale 
PV power plants using a UAV. Consequently, it is considered 
reasonable to employ a method for comparing the intensity 
characteristics of individual panel area polygons, rather than 
one using threshold values, such as the Canny edge operator, 
for developing an algorithm in this study. In a related 
previous study, Kim et al. (2016a) proposed using statistical 
characteristics of the thermal image intensity as parameters 
for panel fault diagnosis, as defective panels display different 
patterns of intensity compared to intact panels. Drawing on 
this finding, this study aims to develop an algorithm capable 
of automated PV panel fault diagnosis using intensity-related 
statistical values of each panel based on extracted panel area 
polygons.

2. Analysis of PV Panel Intensity 

Characteristics for a Thermal Infrared Image

As experimental data, we used a sample image (Fig. 
1(a)) obtained from FLIR T620 thermal imaging camera 
mounted on a UAV, provided online by Paul Kitawa, at 
a size of 640×480 pixels. In a previous study (Kim et al., 
2016b), we developed an image segmentation-based panel 
area extraction algorithm and created polygons for individual 
panel areas as shown in Fig. 1(b). The panel area extraction 
algorithm generates individual panel polygons by combining 
the background area image and the panel boundary image. 
Although the extracted polygons did not show perfect 
linearity due to noise around the panels, the study confirmed 
that panel areas could be expressed with 93.9% accuracy 
compared with visually extracted and manually digitized 
panel boundaries using the performance assessment method 
of McGlone et al. (2004). In Fig. 1(c), each panel is labeled 
with a serial number assigned to each extracted panel area 
polygon. Visual inspection of the labeled panels reveals that 
hot spots are present on a total of five panels (6, 23, 26, 64, and 
66) in a string form. Analysis of the thermal characteristics 
of defective PV modules suggests that these hot spots are due 
to defective bypass diodes within the modules (Köntges et 
al., 2014; Shin et al., 2015).

Fig. 2 displays a three-dimensional (row, column, intensity) 
representation of the thermal intensity characteristics of the 
extracted panel area. Whereas most of the panels display 
almost the same geometry and intensity characteristics, with 
a very small range of variation, panels containing hot spot 
cells show a greater intensity of variation. The differences 
are too subtle to be recognized visually, however, the gray 
scale image clearly shows that the overall intensity of the 
panels increases toward the right. This may be explained by 
the fact that the panels situated on the right side are closer 

(a) (b)

(c)
Fig. 1. (a) Sample thermal infrared image (www.kiwata.
de), (b) Panel area extraction result, and (c) Gray scale 

image with PV module numbers labeled

Fig. 2. Thermal intensity characteristics of the extracted 
panel area
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to the sensor than those on the left. The high-intensity area 
displayed on the bottom edge of panel 33 (Fig. 2) can be 
attributed to imperfect panel area extraction due to noise on 
the ground near the panel, which caused an expanded area to 
be extracted on the bottom edge.

This study aims to develop an algorithm for detecting 
defective panels by identifying panels with hot spot cells 
displayed on thermal infrared images. Therefore, the 
algorithm should be able to identify a panel exhibiting 
high intensity within its ROI. In Fig. 3, the intensity range 
of each panel within its ROI is displayed using maximum 
and minimum intensity values, with blue and yellow bars 
representing the intensities of normal and defective panels, 
respectively. If a threshold method is used to diagnose 
defective panels, the selection of a moderate threshold (Case 
1 in Fig. 3) results in many normal panels being identified 
as defective, in addition to those that actually are defective. 
When a high threshold value is set, for example in Case 2 
(Fig. 3), not all defective panels are detected. In addition, 
if the algorithm is designed to identify defective panels 
merely on the basis of the maximum intensity, it is possible 
that a normal panel is diagnosed as being defective due to 
area extraction error, as in the case of panel 33. From these 
examples, it can be inferred that fault diagnosis based on 
intensity range alone is prone to error.

To reduce fault diagnosis error, it is essential to consider the 
overall intensity characteristics of each panel. We compared 
intensity histograms in order to determine the intensity 
characteristics of normal and defective panels (Fig. 4). The 

histograms on the left side in Fig. 4 represent normal panels 
(25 and 63), and those on the right side represent defective 
panels (26 and 64). As intensity distributions of normal 
panels are similar to those of adjacent panels, normal panels 
close to panels with hot spots were selected for comparison. 
The blue solid and dotted lines in Fig. 4 represent the mean 
intensity and standard deviation range, respectively, of pixels 
in the entire panel area. The red diamond and solid line 
represent the mean intensity and standard deviation range, 
respectively, of the pixels in each panel area concerned. The 
normal panel histograms are distributed at an intensity range 
of 200 or lower and display patterns similar to the normal 
distribution of the entire panel area. In contrast, the defective 
panel histograms contain pixels with intensity values 
exceeding 200 and display multiple peaks that deviate from 
a normal distribution. Comparison of the mean intensity 
and standard deviation range of each panel revealed that 
while normal panels displayed values similar to the standard 
deviation range of the entire panel area, defective panels 
displayed higher values. This result is attributable to the 
increased intensity distribution range caused by the hot spots 
present on defective panels, resulting in a larger standard 
deviation.

Fig. 4. Examples of the intensity histogram and statistical 
characteristics of normal and defective panels

Fig. 3. Intensity range of each panel
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The box plot (box and whisker diagram) in Fig. 5 represents 
the mean and standard deviation range of the intensity 
calculated from each of the panel area pixels. Red and green 
squares represent the mean intensity values of normal and 
defective panels, respectively, and the solid red line represents 
the intensity standard deviation range of each panel. As in Fig. 
4, the blue solid and dotted lines represent the mean intensity 
and standard deviation range of pixels in the entire panel area.

Two major characteristics can be distinguished from 
Fig. 5. Firstly, the mean intensity of each panel mostly falls 
within the standard deviation range of the mean intensity 
of all panels. Of the defective panels, the mean intensity of 
panels 26, 64, and 66 surpassed the standard deviation range 
of all panels, while that of panels 6 and 23 fell within it. This 
implies that the mean intensity of each panel is not a reliable 
parameter for detection of defective panels. Fortunately, the 
mean intensity of defective panels is substantially different 
from that of adjacent panels. Therefore, the mean intensity of 
a panel can be used as one of the inspection parameters for 
fault diagnosis of PV panels.

The second characteristic derived from Fig. 5 concerns the 
standard deviation range of each panel. When the standard 
deviation range of each panel was compared, defective 
panels showed ranges higher than those of normal panels, 
and above those of the entire panel dataset. In the case of 
panels 6 and 23, intensities at hot spot cells were lower than 

those of other defective panels, and close to the entire panel 
dataset. However, despite smaller differences, their standard 
deviation ranges were verified to be clearly larger than those 
of normal panels aligned in the same array row. Therefore, 
it is considered that the method of comparing with adjacent 
panels is more efficient for detecting defective panels than 
using a specific standard deviation range for diagnosis.

Application of intensity-related statistics as parameters 
for fault diagnosis means that detection error arising from 
area extraction error is precluded, which cannot be achieved 
using the maximum intensity for fault diagnosis. Moreover, 
because the method enables an automated range setting for 
fault diagnosis from the given images, it is judged to be 
adequate for the application to an automated large-scale PV 
power plant monitoring system.

3. Development and Evaluation of the Fault 

Diagnosis Algorithm

From the analysis of the intensity-related statistics, we can 
derive a method for assigning a reference value applicable 
to the fault diagnosis algorithm. For the purpose of this 
study, the mean intensity and standard deviation of each 
panel were selected as parameters for fault diagnosis of PV 
panels. Firstly, any panel with a mean intensity that deviates 
from the sample standard deviation of the sample mean 
intensities of the adjacent sample panels can be defined as a 
candidate defective panel. Here, adjacent panels are selected 
from panels situated in the same array. If the intensities of 
each panel can be normalized, the malfunction panel can 
be detected by analyzing the intensities of the entire panel. 
However, for the normalization of the intensities, parameters 
that can grasp the geometrical relationship between the target 
and the sensor are required. Since these parameters were 
not obtained in this study, a comparison method between 
adjacent panels (panels located in the same array row) was 
applied to detect malfunctioning panels with only sample 
images. As such, if the standard deviation is calculated after 
dividing by the number of the sample panels, the reference 
value for diagnosing a defective panel can be adjusted for 
each array, and candidate defective panels can be detected 
efficiently. In this study, this is defined as the CMI (criterion 

Fig. 5. Statistical characteristics of each panel
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for mean intensities). Next, any panel with a 1σ intensity 
range larger than the standard deviation (average range of 
samples standard deviations) of all the adjacent panels can be 
classified as a candidate defective panel. In this paper, this is 
defined as the CSD (criterion for standard deviations). Here, 
the average standard deviation of all the adjacent panels was 
calculated by assigning a weight to the number of pixels 
using Eq. (1), in order to reflect the different number of pixels 
in each panel ROI.
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where, Sw  denotes the weighted average of standard 
deviations, n denotes the number of pixels of each panel, 

                                   
             

 
           
 

               
      

 

              
            

 

 

 the standard deviation of each panel and k the number 
of panels.

The conditions for defective panel detection were set as 
follows: (i) a mean panel intensity larger than the CMI; 
(ii) the sum of the average of the standard deviations and 

mean intensity of the target panel larger than the sum of 
the CMI and mean intensity. These detection conditions 
were selected as the purpose of this study is to detect 
defective panels under the assumption that panels with 
hot spots are defective panels. Consequently, a panel 
with a mean intensity lower than the CMI range on the 
image is considered a normal panel. This criterion setting 
method, which uses the 1σ range, is an empirical method 
derived from the thermal infrared image analysis of solar 

Fig. 6. Results of the fault diagnosis algorithm application

Fig. 7. (a) and (b) Additional test images for evaluation of the fault diagnosis algorithm (www.kitawa.de), (c) and (d) Results 
of the panel area extraction

(a)

(c)

(b)

(d)
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power plants. Since this method is based on the empirical 
characteristics of intensity, various sample image analysis 
should be added to improve the integrity of the algorithm. 
Fig. 6 presents the results from diagnosing defective panels 
using the proposed algorithm. The red and green squares 
represent the mean intensities of the normal panels, and 
panels diagnosed as defective, respectively. Red lines 
represent the 1σ range of a given panel. Blue + and red × 
represent the CMI and CSD ranges, respectively. In order to 
show whether a panel classified as a defective panel met the 
CSD condition, the CSD range of the panel concerned was 
marked as a blue ×. Fig. 6 shows that a total of seven panels 
were recognized as defective, although the actual number of 
defective panels with hot spots on the image was confirmed 
as five. Hence, the algorithm was found to have limitations 
in fault diagnosis by classifying panels without hot spots, 
such as panels 17 and 50, as defective panels.

We applied the algorithm to an additional two images for 
evaluation purposes. Figs 7 (a) and (b) present the results of 
target panel labeling after converting two thermal infrared 
images into gray scale images. The images were retrieved 
from the website of Paul Kitawa, as the example image 
presented earlier. Drawing on our previous study (Kim et al., 
2016b), in which panel area ROIs were generated from these 
images, we were able to evaluate the results of the algorithm 
using the images and ROI data. There are three defective 
panels (11, 12, and 13) on image (a) and five defective panels 
(4, 32, 59, 60, and 65) on image (b). Figs 7 (c) and (d) present 
the results of the panel area extraction.

Figs 8 and 9 represent the results of the algorithm for the 
images in Figs 7 (a) and (b), respectively. The results were 
consistent with the defective panels recognized by visual 
inspection, and no diagnosis error of recognizing a defective 
panel and a normal panel occurred. In Fig. 8, the mean 
intensity of each panel was found to increase exponentially 
as the row in the same array advanced. Likewise, the 
mean intensities of the normal panels generally showed a 
continuous pattern well-aligned with the adjacent panels in 
terms of mean intensity. These characteristics allowed us to 
conclude that it was adequate to select the mean intensity of 
each panel as the main parameter for fault diagnosis in the 
proposed algorithm.

Table 1 outlines the results of the performance evaluation 
using a confusion matrix on the basis of the number of 
panels inspected. The confusion matrix is used as a method 
for quantitative performance evaluation of the proposed 
algorithm. It classifies the result of comparing the predicted 
class and actual class as true or false. Positive and negative 
values were assigned to defective and normal panels, 
respectively, such that values TP (True Positive), FN (False 
Negative), FP (False Positive), and TN (True Negative) 
constituting the confusion matrix were defined as follows. 
TP is the case where a defective panel is correctly recognized, 
FN is where a defective panel is not recognized, FP is where 
a normal panel is recognized as a defective panel, and TN 
is where a normal panel is not recognized. We evaluated 
the algorithm in terms of completeness and accuracy, with 
the former representing the rate of correct recognition of 
the defective panels displayed on the image and the later 
representing the degree of classification accuracy. These 

Fig. 8. Results of the algorithm implementation to the 
image in Fig. 7(a)

Fig. 9. Results of the algorithm implementation to the 
image in Fig. 7(b)
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two indicators were computed using Eq. (2) and Eq. (3), 
respectively.
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Looking at the results presented in Table 1, FN is 0 in all 
three images, i.e., completeness is 100%. This means that the 
proposed algorithm recognized all defective panels displayed 
on the images. As such, this algorithm has met the purpose of 
detecting defective panels. However, the algorithm achieved 
an accuracy of approximately 97% in Fig. 1, which implies 
that a normal panel may be recognized as a defective panel. 
Therefore, it is considered necessary to improve the accuracy 
of the algorithm by setting out additional conditions in a 
future study.

4. Conclusions

We developed an algorithm capable of automatically 
diagnosing defective PV panels based on intensity statistics. 
As parameters for fault diagnosis, we selected the mean 
intensity and standard deviation range, and applied a local 
detection rule to diagnose faults using the statistics of each 
array row, not the entire panels. In comparison with the 
general detection rule of computing the standard deviation 
of the entire data range, this method is judged to be better 
suited for sensitive classification as it can narrow the range 
of determining normal or defective panels. However, given 
that the proposed algorithm was implemented only on three 
thermal infrared images in this study, additional image 
analysis will have to be performed to prove the reliability 
of the algorithm in terms of completeness and accuracy 

and to further improve its performance. Additionally, the 
sample images were of similar panel sizes and intensity 
characteristics; it is thus necessary to conduct further 
sample analysis study, thereby varying conditions such as 
the years of service of panels, observation hours, and scale 
of photogrammetric measurement. Despite the small sample 
size analyzed, this study is significant in that it ascertained 
the feasibility of using intensity statistics of thermal infrared 
images as parameters for automatic fault diagnosis of PV 
panels. In future research, it is considered necessary to 
explore how to use the orientation parameters of the sensor 
and ground control point (GCP)-based photogrammetric 
surveys to precisely determine the locations of defective 
panels to establish an efficient maintenance and repair 
regimen for large-scale PV power plants
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