• 제목/요약/키워드: U/E function

Search Result 219, Processing Time 0.02 seconds

ON A GENERALIZED DIFFERENCE SEQUENCE SPACES DEFINED BY A MODULUS FUNCTION AND STATISTICAL CONVERGENCE

  • Bataineh Ahmad H.A.
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.261-272
    • /
    • 2006
  • In this paper, we define the sequence spaces: $[V,{\lambda},f,p]_0({\Delta}^r,E,u),\;[V,{\lambda},f,p]_1({\Delta}^r,E,u),\;[V,{\lambda},f,p]_{\infty}({\Delta}^r,E,u),\;S_{\lambda}({\Delta}^r,E,u),\;and\;S_{{\lambda}0}({\Delta}^r,E,u)$, where E is any Banach space, and u = ($u_k$) be any sequence such that $u_k\;{\neq}\;0$ for any k , examine them and give various properties and inclusion relations on these spaces. We also show that the space $S_{\lambda}({\Delta}^r, E, u)$ may be represented as a $[V,{\lambda}, f, p]_1({\Delta}^r, E, u)$ space. These are generalizations of those defined and studied by M. Et., Y. Altin and H. Altinok [7].

RECURRENCE RELATIONS FOR QUOTIENT MOMENTS OF THE EXPONENTIAL DISTRIBUTION BY RECORD VALUES

  • LEE, MIN-YOUNG;CHANG, SE-KYUNG
    • Honam Mathematical Journal
    • /
    • v.26 no.4
    • /
    • pp.463-469
    • /
    • 2004
  • In this paper we establish some recurrence relations satisfied by quotient moments of upper record values from the exponential distribution. Let $\{X_n,\;n{\geq}1\}$ be a sequence of independent and identically distributed random variables with a common continuous distribution function F(x) and probability density function(pdf) f(x). Let $Y_n=max\{X_1,\;X_2,\;{\cdots},\;X_n\}$ for $n{\geq}1$. We say $X_j$ is an upper record value of $\{X_n,\;n{\geq}1\}$, if $Y_j>Y_{j-1}$, j > 1. The indices at which the upper record values occur are given by the record times {u(n)}, $n{\geq}1$, where u(n)=min\{j{\mid}j>u(n-1),\;X_j>X_{u(n-1)},\;n{\geq}2\} and u(1) = 1. Suppose $X{\in}Exp(1)$. Then $\Large{E\;\left.{\frac{X^r_{u(m)}}{X^{s+1}_{u(n)}}}\right)=\frac{1}{s}E\;\left.{\frac{X^r_{u(m)}}{X^s_{u(n-1)}}}\right)-\frac{1}{s}E\;\left.{\frac{X^r_{u(m)}}{X^s_{u(n)}}}\right)}$ and $\Large{E\;\left.{\frac{X^{r+1}_{u(m)}}{X^s_{u(n)}}}\right)=\frac{1}{(r+2)}E\;\left.{\frac{X^{r+2}_{u(m)}}{X^s_{u(n-1)}}}\right)-\frac{1}{(r+2)}E\;\left.{\frac{X^{r+2}_{u(m-1)}}{X^s_{u(n-1)}}}\right)}$.

  • PDF

Effects of Upper Extremity Exercise Training Using Biefeedback and Constraint-induced Movement on the Upper Extremity Function of Hemiplegic Patients (바이오피드백과 건측 억제유도 운동을 이용한 상지운동훈련이 편마비 환자의 상지기능에 미치는 효과)

  • 김금순;강지연
    • Journal of Korean Academy of Nursing
    • /
    • v.33 no.5
    • /
    • pp.591-600
    • /
    • 2003
  • Purpose: The purpose of this study was to investigate the effects of exercise training using biofeedback and constraint-induced movement on the upper extremity function of hemiplegic patients. Method: A non-equivalent pretest-posttest design was used. Study subjects were a conveniently selected group of 40 hemiplegic patients(20 experimental subjects, 20 control subjects) who have been enrolled in two community health centers. After biofeedback training the subjects of experimental group were given constraint-induced movement, involving restraint of unaffected U/E in a sling for about 6 hours in a day over a period of two weeks, while at the same time intensively training the affected U/E. Outcomes were evaluated on the basis of the VIE motor ability(hand function, grip power, pinch power, U/E ROMs), and motor activity(amount, quality). Result: 1. After 2 weeks of treatment, the motor abilities of affected U/E(hand function, grip power, pinch power, ROMs of wrist flexion, elbow flexion and shoulder flexion/extension) were significantly higher in subjects who participated in exercise training than in subjects in the control group with no decrement at 4-week follow-up. However, there was no significant difference in wrist extension between experimental or control group. 2. After 2 weeks of treatment, the amount of use and the quality of motor activity of affected U/E were significantly higher in subjects who participated in exercise training than in subjects in the control group with no decrement at 4-week follow-up. Conclusion: The above results state that exercise training using biofeedback and constraint-induced movement could be an effective intervention for improving U/E function of chronic hemiplegic patients. Long-term studies are needed to determine the lasting effects of constraint-induced movement.

Effects of Constraint-Induced Movement Using Self-Efficacy Enhancing Strategies on the Upper Extremity Function of Chronic Hemiplegic Patients (자기효능증진전략을 이용한 건측억제유도운동이 편마비 환자의 상지기능에 미치는 효과)

  • Kang, Ji-Yeon
    • Journal of Korean Academy of Nursing
    • /
    • v.36 no.2
    • /
    • pp.403-414
    • /
    • 2006
  • Purpose: The purpose of this study was to investigate the effects of constraint-induced (CI) movement using self-efficacy on U/E function of chronic hemiplegic patients. CI movement discourages the use of the unaffected U/E, combined with intensive training of the affected U/E. Method: A non-equivalent pretest-posttest design was used. Study subjects were 40 hemiplegic patients conveniently selected from 2 different community health centers. The experimental subjects participated in the CI movement program for 6 hours daily over a period of two weeks. The exercises for affected U/E consisted of warming up, main exercise and ADL practice. To encourage the participants' behaviors self-efficacy enhancing strategies were used, which included performance accomplishment, vicarious experience, verbal persuasion and emotional arousal. Result: After 2 weeks of treatment, the grip power, pinch power, wrist flexion/extension, elbow flexion, and shoulder flexion/extension were significantly higher in the experimental subjects than in the control subjects. However, there was no significant difference in hand functions of the two groups. Conclusion: The above results show that the constraint-induced movement using self-efficacy could be an effective nursing intervention for improving U/E function of chronic hemiplegic patients. Long term studies are needed to determine the lasting effects of constraint-induced movement.

RECURRENCE RELATIONS FOR QUOTIENT MOMENTS OF THE PARETO DISTRIBUTION BY RECORD VALUES

  • Lee, Min-Young;Chang, Se-Kyung
    • The Pure and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.97-102
    • /
    • 2004
  • In this paper we establish some recurrence relations satisfied by quotient moments of upper record values from the Pareto distribution. Let {$X_n,n\qeq1$}be a sequence of independent and identically distributed random variables with a common continuous distribution function(cdf) F($chi$) and probability density function(pdf) f($chi$). Let $Y_n\;=\;mas{X_1,X_2,...,X_n}$ for $ngeq1$. We say $X_{j}$ is an upper record value of {$X_{n},n\geq1$}, if $Y_{j}$$Y_{j-1}$,j>1. The indices at which the upper record values occur are given by the record times ${u( n)}n,\geq1$, where u(n) = min{j|j >u(n-l), $X_{j}$$X_{u(n-1)}$,n\qeq2$ and u(l) = 1. Suppose $X{\epsilon}PAR(\frac{1}{\beta},\frac{1}{\beta}$ then E$(\frac{{X^\tau}}_{u(m)}}{{X^{s+1}}_{u(n)})\;=\;\frac{1}{s}E$ E$(\frac{{X^\tau}}_{u(m)}{{X^s}_{u(n-1)}})$ - $\frac{(1+\betas)}{s}E(\frac{{X^\tau}_{u(m)}}{{X^s}_{u(n)}}$ and E$(\frac{{X^{\tau+1}}_{u(m)}}{{X^s}_{u(n)}})$ = $\frac{1}{(r+1)\beta}$ [E$(\frac{{X^{\tau+1}}}_u(m)}{{X^s}_{u(n-1)}})$ - E$(\frac{{X^{\tau+1}}_u(m)}}{{X^s}_{u(n-1)}})$ - (r+1)E$(\frac{{X^\tau}_{u(m)}}{{X^s}_{u(n)}})$]

  • PDF

RECURRENCE RELATION FOR QUOTIENTS OF THE POWER DISTRIBUTION BY RECORD VALUES

  • Lee, Min-Young;Chang, Se-Kyung
    • Korean Journal of Mathematics
    • /
    • v.12 no.1
    • /
    • pp.15-22
    • /
    • 2004
  • In this paper we establish some recurrence relations satisfied by quotient moments of upper record values from the power distribution. Let {$X_n$, $n{\geq}1$} be a sequence of independent an identically distributed random variables with a common continuous distribution function(cdf) $F(x)$ and probability density function(pdf) $f(x)$. Let $Y_n=max\{X_1,X_2,{\cdots},X_n\}$ for $n{\geq}1$. We say $X_j$ is an upper record value of {$X_n$, $n{\geq}1$}, if $Y_j$ > $Y_{j-1}$, $j$ > 1. The indices at which the upper record values occur are given by the record times {$u(n)$}, $n{\geq}1$, where $u(n)=min\{j{\mid}j>u(n-1),X_j>X_{u(n-1)},n{\geq}2\}$ and $u(1)=1$. Suppose $X{\in}POW(0,1,{\theta})$ then $$E\left(\frac{X^r_{u(m)}}{X^{s+1}_{u(n)}}\right)=\frac{\theta}{s}E\left(\frac{X^r_{u(m)}}{X^s_{u(n-1)}}\right)+\frac{(s-\theta)}{s}E\left(\frac{X^r_{u(m)}}{X^s_{u(n)}\right)\;and\;E\left(\frac{X^{r+1}_{u(m)}}{X^s_{u(n)}}\right)=\frac{\theta}{n+1}\left[E\left(\frac{X^{r+1}_{u(m-1)}}{X^s_{u(n+1)}}\right)-E\left(\frac{X^{r+1}_{u(m)}}{X^s_{u(n-1)}}\right)+\frac{r+1}{\theta}E\left(\frac{X^r_{u(m)}}{X^s_{u(n)}}\right)\right]$$.

  • PDF

CHARACTERIZATIONS OF THE PARETO DISTRIBUTION BY CONDITIONAL EXPECTATIONS OF RECORD VALUES

  • Lee, Min-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.1
    • /
    • pp.127-131
    • /
    • 2003
  • Let X$_1$, X$_2$,... be a sequence of independent and identically distributed random variables with continuous cumulative distribution function F(x). X$_j$ is an upper record value of this sequence if X$_j$ > max {X$_1$,X$_2$,...,X$_{j-1}$}. We define u(n)=min{j$\mid$j> u(n-1), X$_j$ > X$_{u(n-1)}$, n $\geq$ 2} with u(1)=1. Then F(x) = 1-x$^{\theta}$, x > 1, ${\theta}$ < -1 if and only if (${\theta}$+1)E[X$_{u(n+1)}$$\mid$X$_{u(m)}$=y] = ${\theta}E[X_{u(n)}$\mid$X_{u(m)}=y], (\theta+1)^2E[X_{u(n+2)}$\mid$X_{u(m)}=y] = \theta^2E[X_{u(n)}$\mid$X_{u(m)}=y], or (\theta+1)^3E[X_{u(n+3)}$\mid$X_{u(m)}=y] = \theta^3E[X_{u(n)}$\mid$X_{u(m)}=y], n $\geq$ M+1$.

ON THE CAUCHY PROBLEM FOR SOME ABSTRACT NONLINEAR DIFFERENTIAL EQUATIONS

  • Hamza A.S. Abujabal;Mahmoud M. El-Boral
    • Journal of applied mathematics & informatics
    • /
    • v.3 no.2
    • /
    • pp.279-290
    • /
    • 1996
  • In the present paper we study the Cauchy problem in a Banach space E for an abstract nonlinear differential equation of form $$\frac{d^2u}{dt^2}=-A{\frac{du}{dt}}+B(t)u+f(t, W)$$ where W=($A_1$(t)u, A_2(t)u)..., A_{\nu}(t)u), A_{i}(t),\;i=1,2,...{\nu}$,(B(t), t{\in}I$=[0, b]) are families of closed operators defined on dense sets in E into E, f is a given abstract nonlinear function on $I{\times}E^{\nu}$ into E and -A is a closed linar operator defined on dense set in e into E which generates a semi-group. Further the existence and uniqueness of the solution of the considered Cauchy problem is studied for a wide class of the families ($A_{i}$(t), i =1.2...${\nu}$), (B(t), $t{\in}I$) An application and some properties are also given for the theory of partial diferential equations.

ON A CHARACTERIZATION OF THE EXPONENTIAL DISTRIBUTION BY CONDITIONAL EXPECTATIONS OF RECORD VALUES

  • Lee, Min-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.2
    • /
    • pp.287-290
    • /
    • 2001
  • Let X$_1$, X$_2$, … be a sequence of independent and identically distributed random variables with continuous cumulative distribution function F(x). X(sub)j is an upper record value of this sequence if X(sub)j > max {X$_1$, X$_2$, …, X(sub)j-1}. We define u(n) = min {j│j > u(n-1), X(sub)j > X(sub)u(n-1), n $\geq$ 2} with u(1) = 1. Then F(x) = 1 - e(sup)-x/c, x > 0 if and only if E[X(sub)n(n+1) - X(sub)u(n)│X(sub)u(m) = y] = c or E[X(sub)u(n+2) - X(sub)u(n)│X(sub)u(m) = y] = 2c, n $\geq$ m+1.

  • PDF