• 제목/요약/키워드: Type-2 Fuzzy Set

검색결과 44건 처리시간 0.033초

타입-2 퍼지값의 순위결정 (A Ranking Method for Type-2 Fuzzy Values)

  • 이승수;이광형
    • 한국지능시스템학회논문지
    • /
    • 제12권4호
    • /
    • pp.341-346
    • /
    • 2002
  • 주어진 값에 존재하는 불확실성을 표현하기 위하여 타입-1 퍼지값을 사용하듯이, 타입-1 퍼지값의 소속함수를 명확히 정의하기 어려운 경우에 타입-2 퍼지값을 사용할 수 있다. 타입-2 퍼지값은 타입-1 퍼지값에 비해 표현범위가 넓다는 장점이 있지만 타입-2 퍼지값의 사용을 위해서는 기존에 타입-1 퍼지값에서 정의되었던 연산들에 대한 확장된 재정의가 필요하다. 본 논문에서는 타입-2 퍼지값에 대한 비교 및 순위결정에 대한 방법을 제안하였다. 제안된 방법은 타입-2 퍼지값의 실제값과 그 실제값에 대한 가능성을 고려하여 비교결과를 산출하는 만족함수에 기반하고 있으며, 각각의 비교 및 순위결정 결과에 대한 가능성 혹은 신뢰도를 계산한다. 본 논문에서는 제안된 방법이 갖는 몇몇 특성에 대하여도 분석하였다.

FUZZY TRANSPORTATION PROBLEM WITH ADDITIONAL CONSTRAINT IN DIFFERENT ENVIRONMENTS

  • BUVANESHWARI, T.K.;ANURADHA, D.
    • Journal of applied mathematics & informatics
    • /
    • 제40권5_6호
    • /
    • pp.933-947
    • /
    • 2022
  • In this research, we presented the type 2 fuzzy transportation problem with additional constraints and solved by our proposed genetic algorithm model, and the results are verified using the softwares, genetic algorithm tool in Matlab and Lingo. The goal of our approach is to minimize the cost in solving a transportation problem with an additional constraint (TPAC) using the genetic algorithm (GA) based type 2 fuzzy parameter. We reduced the type 2 fuzzy set (T2FS) into a type 1 fuzzy set (T1FS) using a critical value-based reduction method (CVRM). Also, we use the centroid method (CM) to obtain the corresponding crisp value for this reduced fuzzy set. To achieve the best solution, GA is applied to TPAC in type 2 fuzzy parameters. A real-life situation is considered to illustrate the method.

패턴 인식을 위한 Interval Type-2 퍼지 집합 기반의 최적 다중출력 퍼지 뉴럴 네트워크 (Optimized Multi-Output Fuzzy Neural Networks Based on Interval Type-2 Fuzzy Set for Pattern Recognition)

  • 박건준;오성권
    • 전기학회논문지
    • /
    • 제62권5호
    • /
    • pp.705-711
    • /
    • 2013
  • In this paper, we introduce an design of multi-output fuzzy neural networks based on Interval Type-2 fuzzy set. The proposed Interval Type-2 fuzzy set-based fuzzy neural networks with multi-output (IT2FS-based FNNm) comprise the network structure generated by dividing the input space individually. The premise part of the fuzzy rules of the network reflects the individuality of the division space for the entire input space and the consequent part of the fuzzy rules expresses three types of polynomial functions with interval sets such as constant, linear, and modified quadratic inference for pattern recognition. The learning of fuzzy neural networks is realized by adjusting connections of the neurons in the consequent part of the fuzzy rules, and it follows a back-propagation algorithm. In addition, in order to optimize the network, the parameters of the network such as apexes of membership functions, uncertainty factor, learning rate and momentum coefficient were automatically optimized by using real-coded genetic algorithm. The proposed model is evaluated with the use of numerical experimentation.

Interval 제 2 종 퍼지 radial basis function neural network (Interval type-2 fuzzy radial basis function neural network)

  • 최병인;이정훈
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 추계학술대회 학술발표 논문집 제16권 제2호
    • /
    • pp.19-22
    • /
    • 2006
  • Type-2 fuzzy 이론은 기존의 퍼지 이론보다 패턴의 불확실성에 대한 제어를 더 향상시킬 수 있다. 반면에 계산 량이 커지는 문제점 때문에 본 논문에서는 type-2 fuzzy set 대신에 secondary membership이 interval의 형태를 갖는 interval type-2 fuzzy set을 기존의 radial basis function(RBF) neural network에 적용시킨 interval type-2 fuzzy RBF neural network를 제안한다. 제안한 알고리즘은 interval type-2 fuzzy membership function에 의하여 패턴들의 불확실성을 좀 더 잘 제어하여 기존의 RBF neural network의 성능을 향상시킬 수 있다. 본 논문에서는 제안한 알고리즘의 타당성을 보이기 위하여 여러 데이터 집합에 대한 분류 결과를 보인다.

  • PDF

C-Means 클러스터링 기반의 Type-2 퍼지 논리 시스템을 이용한 비선형 모델 설계 (Design of Nonlinear Model Using Type-2 Fuzzy Logic System by Means of C-Means Clustering)

  • 백진열;이영일;오성권
    • 한국지능시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.842-848
    • /
    • 2008
  • 본 논문에서는 비선형 모델의 설계를 위해 Type-2 퍼지 논리 집합을 이용하여 불확실성 문제를 다룬다. 제안된 모델은 규칙의 전 후반부가 Type-2 퍼지 집합으로 주어진 Type-2 퍼지 논리 시스템을 설계하고 불확실성의 변화에 대한 비선형 모델의 성능을 해석한다 여기서 규칙 전반부 멤버쉽 함수의 정점 선택은 C-means 클러스터링 알고리즘을 이용하고, 규칙 무반부 퍼지 집합의 정점 결정에는 경사 하강법(Gradient descent method)을 이용한 오류 역전파 알고리즘을 사용하여 학습한다. 또한, 제안된 모델에 관련된 파라미터는 입자 군집 최적화(Particle Swarm Optimization; PSO) 알고리즘으로 동조한다. 제안된 모델은 모의 데이터집합(Synthetic dadaset), Mackey-Glass 시계열 공정 데이터를 적용하여 논증되고, 기존 Type-1 퍼지 논리 시스템과의 근사화 및 일반화 능력에 대하여 비교 토의한다.

A Simple Method for Solving Type-2 and Type-4 Fuzzy Transportation Problems

  • Senthil Kumar, P.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권4호
    • /
    • pp.225-237
    • /
    • 2016
  • In conventional transportation problem (TP), all the parameters are always certain. But, many of the real life situations in industry or organization, the parameters (supply, demand and cost) of the TP are not precise which are imprecise in nature in different factors like the market condition, variations in rates of diesel, traffic jams, weather in hilly areas, capacity of men and machine, long power cut, labourer's over time work, unexpected failures in machine, seasonal changes and many more. To counter these problems, depending on the nature of the parameters, the TP is classified into two categories namely type-2 and type-4 fuzzy transportation problems (FTPs) under uncertain environment and formulates the problem and utilizes the trapezoidal fuzzy number (TrFN) to solve the TP. The existing ranking procedure of Liou and Wang (1992) is used to transform the type-2 and type-4 FTPs into a crisp one so that the conventional method may be applied to solve the TP. Moreover, the solution procedure differs from TP to type-2 and type-4 FTPs in allocation step only. Therefore a simple and efficient method denoted by PSK (P. Senthil Kumar) method is proposed to obtain an optimal solution in terms of TrFNs. From this fuzzy solution, the decision maker (DM) can decide the level of acceptance for the transportation cost or profit. Thus, the major applications of fuzzy set theory are widely used in areas such as inventory control, communication network, aggregate planning, employment scheduling, and personnel assignment and so on.

TPM에서 퍼지 OEE 모형의 개발 및 분석 (Development and Analysis of Fuzzy Overall Equipment Effectiveness (OEE) in TPM)

  • 최성운
    • 한국경영공학회지
    • /
    • 제23권4호
    • /
    • pp.87-103
    • /
    • 2018
  • This paper introduces the method to develop two main types of the fuzzy OEE (Overall Equipment Effectiveness) models via triangular membership function for measuring uncertainty. The fuzzy OEE includes model type 1 and model type 2. The model type 1 is used when the theoretical machine speed only reflects the time loss whereas model type 2 is used when the actual machine speed reflects both time and speed loss. Model type 2 has shown to perform a lower availability rate and a higher performance rate compared to model type 1. In addition, the fuzzy UPH (Unit Per Hour) which is derived from using the fuzzy OEE is presented to satisfy demand uncertainty. The fuzzy UPH can easily measure the fuzzy tact time and cycle time by reciprocating itself. Finally, this study demonstrates the fuzzy OEE models using IVIFS (Interval-Valued Intuitionistic Fuzzy Set) based on the characterization via membership function, non-membership function and hesitant function. For the purpose of analyzing the fuzzy system OEE, the OEE for each machine of plant structure is considered triangular interval-valued intuitionistic fuzzy number. Regardless of plant structure, the validity degree of fuzzy membership function of system OEE decreases when the number of machine with worst value of the validity degree increases. Corresponding examples are presented in this paper for practitioner to understand the applicability and practicability of the proposed fuzzy OEE methods.

제2종 퍼지집합과 그 응용 (Type-2 fuzzy sets and their applications)

  • Lee, Chae-Jang
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.9-12
    • /
    • 2000
  • In this paper, we are interested in counting the number of elements of a type two fuzzy set. Using concepts of type-two fuzzy sets, we can obtain some properties of these concepts and some results of possibility of type-two fuzzy sets.

  • PDF

Interval Type-2 Possibilistic Fuzzy C-means 클러스터링을 위한 퍼지화 상수 결정 방법 (Determining the Fuzzifier Values for Interval Type-2 Possibilistic Fuzzy C-means Clustering)

  • 주원희;이정훈
    • 한국지능시스템학회논문지
    • /
    • 제27권2호
    • /
    • pp.99-105
    • /
    • 2017
  • 일반적으로 type-1 fuzzy set 에 존재하는 불확실성을 보다 효율적으로 다루고 제어하기 위하여 Type-2 fuzzy set (T2 FS)이 널리 사용되고 있다. T2 FS에서 퍼지화 상수 (fuzzifier value) m은 이러한 불확실성을 처리하기 위한 가장 중요한 요소이다. 따라서 적절한 퍼지화 상수 값을 결정하는 연구는 여전히 지속되고 있고, 많은 방법들이 연구 되어 왔다. 본 논문에서는 주어진 패턴을 분류하기 위하여 Interval type-2 possibilistic fuzzy C-means (IT2PFCM) 클러스터링 방법을 사용한다. 클러스터링을 위해 사용된 IT2 PFCM 방법에서 각 데이터에 대하여 적응적으로 적절한 퍼지화 상수의 값을 계산하는 방법을 제안한다. 히스토그램 접근법을 통하여 각각의 데이터 포인트로부터 정보를 추출해 내고 추출된 정보를 이용하여 두 개의 퍼지화 상수인 $m_1$, $m_2$. 값을 결정한다. 이렇게 얻어진 값은 interval type-2 fuzzy의 최저 및 최고 멤버쉽 값을 결정하게 된다.