• 제목/요약/키워드: Type V

검색결과 5,542건 처리시간 0.033초

Cyclic Properties of Li[Co0.17Li0.28Mn0.55]O2 Cathode Material

  • Park, Yong-Joon;Hong, Young-Sik;Wu, Xiang-Lan;Kim, Min-Gyu;Ryu, Kwang-Sun;Chang, Soon-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권4호
    • /
    • pp.511-516
    • /
    • 2004
  • A Li$[Co_{0.17}Li_{0.28}Mn_{0.55}]O_2$ cathode compound was prepared by a simple combustion method. The X-ray diffraction pattern showed that this compound could be classified as ${\alpha} -NaFeO_2$ structure type with the lattice constants of a = 2.8405(9) ${\AA}$ and c = 14.228(4) ${\AA}$. According to XANES analysis, the oxidation state of Mn and Co ions in the compound were 4+ and 3+, respectively. During the first charge process, the irreversible voltage plateau at around 4.65 V was observed. The similar voltage-plateau was observed in the initial charge profile of other solid solution series between $Li_2MnO_3\;and\;LiMnO_2$ (M=Ni, Cr...). The first discharge capacity was 187 mAh/g and the second discharge capacity increased to 204 mAh/g. As the increase of cycling number, one smooth discharge profile was converted to two distinct sub-plateaus and the discharge capacity was slowly decreased. From the Co and Mn K-edge XANES spectra measured at different cyclic process, it can be concluded that irreversible transformation of phase is occurred during continuous cycling process.

Purification and Structural Characterization of Cold Shock Protein from Listeria monocytogenes

  • Lee, Ju-Ho;Jeong, Ki-Woong;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권8호
    • /
    • pp.2508-2512
    • /
    • 2012
  • Cold shock proteins (CSPs) are a family of proteins induced at low temperatures. CSPs bind to single-stranded nucleic acids through the ribonucleoprotein 1 and 2 (RNP 1 and 2) binding motifs. CSPs play an essential role in cold adaptation by regulating transcription and translation via molecular chaperones. The solution nuclear magnetic resonance (NMR) or X-ray crystal structures of several CSPs from various microorganisms have been determined, but structural characteristics of psychrophilic CSPs have not been studied. Therefore, we optimized the purification process to obtain highly pure Lm-Csp and determined the three-dimensional structure model of Lm-Csp by comparative homology modeling using MODELLER on the basis of the solution NMR structure of Bs-CspB. Lm-Csp consists of a ${\beta}$-barrel structure, which includes antiparallel ${\beta}$ strands (G4-N10, F15-I18, V26-H29, A46-D50, and P58-Q64). The template protein, Bs-CspB, shares a similar ${\beta}$ sheet structure and an identical chain fold to Lm-Csp. However, the sheets in Lm-Csp were much shorter than those of Bs-CspB. The Lm-Csp side chains, E2 and R20 form a salt bridge, thus, stabilizing the Lm-Csp structure. To evaluate the contribution of this ionic interaction as well as that of the hydrophobic patch on protein stability, we investigated the secondary structures of wild type and mutant protein (W8, F15, and R20) of Lm-Csp using circular dichroism (CD) spectroscopy. The results showed that solvent-exposed aromatic side chains as well as residues participating in ionic interactions are very important for structural stability. Further studies on the three-dimensional structure and dynamics of Lm-Csp using NMR spectroscopy are required.

The Inhibition of C-steel Corrosion in H3PO4 Solution by Some Furfural Hydrazone Derivatives

  • Fouda, A.S.;Badr, G.E.;El-Haddad, M.N.
    • 대한화학회지
    • /
    • 제52권2호
    • /
    • pp.124-132
    • /
    • 2008
  • H3SO4(M: 몰농도) 용액에서 탄소강의 부식방지제로 Furfural hydrazone 유도체의 효과를 질량손실법 및 정전류극성법을 사용해 연구하였다. 이들 유도체 존재하에서 탄소강의 부식속도가 급격히 감소함을 관찰하였다. 이 연구로부터 부식방지효율은 부식방지제 농도가 증가함에 따라 증가하였고 I와 SCN을 첨가하면 부식방지효율은 더욱 증가되었다. 질량손실법을 사용해 5×10-6 M의 유도체가 있을 때와 없을 때 30-60oC 사이에서 탄소강 부식에 미치는 온도 효과를 보았다. 부식과정에 대한 활성화에너지(Ea*)와 다른 열역학적 변수들을 계산하였고 이들에 대해 논의하였다. 정전류극성법을 통해 유도체들이 혼합형 방지제로 작용함을 알았고 외부전류를 흘려주었을 때 음극은 더욱 분극되었다. 3M H3SO4 용액에서 탄소강 표면에 이들 유도체들의 흡착은 Frumkin의 흡착등온을 따랐다. 이들 유도체들의 화학구조를 통해 부식방지 메커니즘을 설명하였다.

Return to Work in Multi-ethnic Breast Cancer Survivors - A Qualitative Inquiry

  • Tan, Foo Lan;Loh, Siew Yim;Su, TinTin;Veloo, V.W.;Ng, Lee Luan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5791-5797
    • /
    • 2012
  • Introduction: Return-to-work (RTW) can be a problematic occupational issue with detrimental impact on the quality of life of previously-employed breast cancer survivors. This study explored barriers and facilitators encountered during the RTW process in the area of cancer survivorship. Materials and Methods: Six focus groups were conducted using a semi-structured interview guide on 40 informants (employed multiethnic survivors). Survivors were stratified into three groups for successfully RTW, and another three groups of survivors who were unable to return to work. Each of the three groups was ethnically homogeneous. Thematic analysis using a constant comparative approach was aided by in vivo software. Results: Participants shared numerous barriers and facilitators which directly or interactively affect RTW. Key barriers were physical-psychological after-effects of treatment, fear of potential environment hazards, high physical job demand, intrusive negative thoughts and overprotective family. Key facilitators were social support, employer support, and regard for financial independence. Across ethnic groups, the main facilitators were financial-independence (for Chinese), and socialisation opportunity (for Malay). A key barrier was after-effects of treatment, expressed across all ethnic groups. Conclusions: Numerous barriers were identified in the non-RTW survivors. Health professionals and especially occupational therapists should be consulted to assist the increasing survivors by providing occupational rehabilitation to enhance RTW amongst employed survivors. Future research to identify prognostic factors can guide clinical efforts to restore cancer survivors to their desired level/type of occupational functioning for productivity and wellbeing.

저속 후방 추돌 자원자 실험을 통한 두부와 경부의 동작분석 (Motion Analysis of Head and Neck of Human Volunteers in Low-Speed Rear Impact)

  • 홍성우;박원필;박성지;유재호;공세진;김한성
    • 자동차안전학회지
    • /
    • 제4권2호
    • /
    • pp.37-43
    • /
    • 2012
  • The purpose of this research is to obtain and analyze dynamic responses from human volunteers for the development of the human-like mechanical or mathematical model for Korean males in automotive rear collisions. This paper focused on the introduction to a low-speed rear impact sled test involving Korean male subjects, and the accumulation of the motion of head and neck. A total of 50 dynamic rear impact sled tests were performed with 50 human volunteers, who are 30-50 year-old males. Each subject can be involved in only one case to prevent any injury in which he was exposed to the impulse that was equivalent to a low-speed rear-end collision of cars at 5-8 km/h for change of velocity, so called, ${\Delta}V$. All subjects were examined by an orthopedist to qualify for the test through the medical check-up of their necks and low backs prior to the test. The impact device is the pendulum type, tuned to simulate the crash pulse of a real vehicle. All motions and impulses were captured and measured by motion capture systems and pressure sensors on the seat. Dynamic responses of head and T1 were analyzed in two cases(5 km/h, 8 km/h) to compare with the results in the previous studies. After the experiments, human subjects were examined to check up any change in the post medical analysis. As a result, there was no change in MRI and no injury reported. Six subjects experienced a minor stiffness on their back for no more than 2 days and got back to normal without any medical treatment.

Characterization and crystal growth of InP by VGF method using quartz ampoule

  • Park, E.S.;C.H. Jung;J.J. Myung;J.Y. Hong;Kim, M.K.
    • 한국결정성장학회지
    • /
    • 제9권6호
    • /
    • pp.542-546
    • /
    • 1999
  • InP single crystal, III-V binary compound semiconductor, was grown by VGF(vertical gradient freeze) method using quartz ampoule and its electrical optical properties were investigated. Phosphorous powders were put in the bottom of quartz ampoule and Indium metal charged in conical quartz crucible what was attached at the upper side position inside the quartz ampoule. It was vacuous under the pressure of $10^5$Torr and sealed up. Indium metal was melted at $1070^{\circ}C$ and InP composition was formed by diffusion of phosphorous sublimated at $450^{\circ}C$ into Indium melt. By cooling the InP composition melt ($2^{\circ}C$~$5^{\circ}C$/hr of cooling rate) in range of $1070^{\circ}C$~$900^{\circ}C$, InP crystal was grown. The grown InP single crystals were investigated by X-ray analysis and polarized optical microscopy. Electrical properties were measured by Van der Pauw method. At the cooling method. At the cooling rate of $2^{\circ}C$/hr, growth direction of ingot was [111] and the quality of ingot was better at the upper side of ingot than the lower side. It was found that the InP crystals were n-type semiconductor and the carrier concentration, electron mobility and relative resistivity were $10^{15}$~$10^{16}/\textrm{cm}^3$ , $2\times 10^3$~$3\times 10^4{\textrm}{cm}^2$/Vsec and$2\times 10^{-1}$~$2\times 10^{-3}$/ Wcm in the range of 150K~300K, respectively.

  • PDF

Epitaxial Growth of Boron-doped Si Film using a Thin Large-grained Si Seed Layer for Thin-film Si Solar Cells

  • Kang, Seung Mo;Ahn, Kyung Min;Moon, Sun Hong;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • 제2권1호
    • /
    • pp.1-7
    • /
    • 2014
  • We developed a method of growing thin Si film at $600^{\circ}C$ by hot wire CVD using a very thin large-grained poly-Si seed layer for thin-film Si solar cells. The seed layer was prepared by crystallizing an amorphous Si film by vapor-induced crystallization using $AlCl_3$ vapor. The average grain size of the p-type epitaxial Si layer was about $20{\mu}m$ and crystallographic defects in the epitaxial layer were mainly low-angle grain boundaries and coincident-site lattice boundaries, which are special boundaries with less electrical activity. Moreover, with a decreasing in-situ boron doping time, the mis-orientation angle between grain boundaries and in-grain defects in epitaxial Si decreased. Due to fewer defects, the epitaxial Si film was high quality evidenced from Raman and TEM analysis. The highest mobility of $360cm^2/V{\cdot}s$ was achieved by decreasing the in-situ boron doping time. The performance of our preliminary thin-film solar cells with a single-side HIT structure and $CoSi_2$ back contact was poor. However, the result showed that the epitaxial Si film has considerable potential for improved performance with a reduced boron doping concentration.

Raney Ni-Zn-Fe 전극의 산소발생 반응 특성에 미치는 도금변수의 영향 (Effect of Electroplating Parameters on Oxygen Evolution Reaction Characteristics of Raney Ni-Zn-Fe Electrode)

  • 채재병;김종원;배기광;박주식;정성욱;정광진;김영호;강경수
    • 한국수소및신에너지학회논문집
    • /
    • 제31권1호
    • /
    • pp.23-32
    • /
    • 2020
  • The intermittent characteristics of renewable energy complicates the process of balancing supply with demand. Electrolysis technology can provide flexibility to grid management by converting electricity to hydrogen. Alkaline electrolysis has been recognized as established technology and utilized in industry for over 100 years. However, high overpotential of oxygen evolution reaction in alkaline water electrolysis reduces the overall efficiency and therefore requires the development of anode catalyst. In this study, Raney Ni-Zn-Fe electrode was prepared by electroplating and the electrode characteristics was studied by varying electroplating parameters like electrodeposition time, current density and substrate. The prepared Raney Ni-Zn-Fe electrode was electrochemically evaluated using linear sweep voltammetry. Physical and chemical analysis were conducted by scanning electron microscope, energy dispersive spectrometer, and X-ray diffraction. The plating time did not changed the morphology and composition of the electrode surface and showed a little effect on overpotential reduction. As the plating current density increased, Fe content on the surface increased and cauliflower-like structure appeared on the electrode surface. In particular, the overpotential of the electrode, which was prepared at the plating current density of 320 mA/㎠, has showed the lowest value of 268 mV at 50 mA/㎠. There was no distinguishable overpotential difference between the type of substrate for the electrodes prepared at 80 mA/㎠.

Development and Metabolite Profiling of Elephant Garlic Vinegar

  • Kim, Jeong-Won;Jeong, Deokyeol;Lee, Youngsuk;Hahn, Dongyup;Nam, Ju-Ock;Lee, Won-Young;Hong, Dong-Hyuck;Kim, Soo Rin;Ha, Yu Shin
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권1호
    • /
    • pp.50-58
    • /
    • 2018
  • Elephant garlic (Allium ampeloprasum var. ampeloprasum), which belongs to the Alliaceae family along with onion and garlic, has a flavor and shape similar to those of normal garlic but is not true garlic. Additionally, its properties are largely unknown, and its processing and product development have not been reported. In this study, we focused on using elephant garlic to produce a new type of vinegar, for which the market is rapidly growing because of its health benefits. First, we evaluated the effects of elephant garlic addition on acetic acid fermentation of rice wine by Acetobacter pasteurianus. In contrast to normal garlic, for which 2% (w/v) addition completely halted fermentation, addition of elephant garlic enabled slow but successful fermentation of ethanol to acetic acid. Metabolite analysis suggested that sulfur-containing volatile compounds were less abundant in elephant garlic than in normal garlic; these volatile compounds may be responsible for inhibiting acetic acid fermentation. After acetic acid fermentation, vinegar with elephant garlic did not have any sulfur-containing volatile compounds, which could positively contribute to the vinegar flavor. Moreover, the amino acid profile of the vinegar suggested that nutritional and sensory properties were more enhanced following addition of elephant garlic. Thus, elephant garlic may have applications in the development of a new vinegar product with improved flavor and quality and potential health benefits.

Low-temperature solution-processed aluminum oxide layers for resistance random access memory on a flexible substrate

  • 신중원;조원주
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.257-257
    • /
    • 2016
  • 최근에 메모리의 초고속화, 고집적화 및 초절전화가 요구되면서 resistive random access memory (ReRAM), ferroelectric RAM (FeRAM), phase change RAM (PRAM)등과 같은 차세대 메모리 기술이 활발히 연구되고 있다. 다양한 메모리 중에서 특히 resistive random access memory (ReRAM)는 빠른 동작 속도, 낮은 동작 전압, 대용량화와 비휘발성 등의 장점을 가진다. ReRAM 소자는 절연막의 저항 스위칭(resistance switching) 현상을 이용하여 동작하기 때문에 SiOx, AlOx, TaOx, ZrOx, NiOx, TiOx, 그리고 HfOx 등과 같은 금속 산화물에 대한 연구들이 활발하게 이루어지고 있다. 이와 같이 다양한 산화물 중에서 AlOx는 ReRAM의 절연막으로 적용되었을 때, 우수한 저항변화특성과 안정성을 가진다. 하지만, AlOx 박막을 형성하기 위하여 기존에 많이 사용되어지던 PVD (physical vapour deposition) 또는 CVD (chemical vapour deposition) 방법에서는 두께가 균일하고 막질이 우수한 박막을 얻을 수 있지만 고가의 진공장비 사용 및 대면적 공정이 곤란하다는 문제점이 있다. 한편, 용액 공정 방법은 공정과정이 간단하여 경제적이고 대면적화가 가능하며 저온에서 공정이 이루어지는 장점으로 많은 관심을 받고 있다. 본 연구에서는 sputtering 방법과 용액 공정 방법으로 형성한 AlOx 기반의 ReRAM에서 메모리 특성을 비교 및 평가하였다. 먼저, p-type Si 기판 위에 습식산화를 통하여 SiO2 300 nm를 성장시킨 후, electron beam evaporation으로 하부 전극을 형성하기 위하여 Ti와 Pt를 각각 10 nm와 100 nm의 두께로 증착하였다. 이후, 제작된 AlOx 용액을 spin coating 방법으로 1000 rpm 10 초, 6000 rpm 30 초의 조건으로 증착하였다. Solvent 및 불순물 제거를 위하여 $180^{\circ}C$의 온도에서 10 분 동안 열처리를 진행하였고, 상부 전극을 형성하기 위해 shadow mask를 이용하여 각각 50 nm, 100 nm 두께의 Ti와 Al을 electron beam evaporation 방법으로 증착하였다. 측정 결과, 용액 공정 방법으로 형성한 AlOx 기반의 ReRAM에서는 기존의 sputtering 방법으로 제작된 ReRAM에 비해서 저항 분포가 균일하지는 않았지만, 103 cycle 이상의 우수한 endurance 특성을 나타냈다. 또한, 1 V 내외로 동작 전압이 낮았으며 104 초 동안의 retention 측정에서도 메모리 특성이 일정하게 유지되었다. 결론적으로, 간단한 용액 공정 방법은 ReRAM 소자 제작에 많이 이용될 것으로 기대된다.

  • PDF