Browse > Article
http://dx.doi.org/10.7316/KHNES.2020.31.1.23

Effect of Electroplating Parameters on Oxygen Evolution Reaction Characteristics of Raney Ni-Zn-Fe Electrode  

CHAE, JAEBYEONG (Korea Institute of Energy Research)
KIM, JONGWON (Korea Institute of Energy Research)
BAE, KIKWANG (Korea Institute of Energy Research)
PARK, CHUSIK (Korea Institute of Energy Research)
JEONG, SEONGUK (Korea Institute of Energy Research)
JUNG, KWANGJIN (Korea Institute of Energy Research)
KIM, YOUNGHO (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
KANG, KYOUNGSOO (Korea Institute of Energy Research)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.31, no.1, 2020 , pp. 23-32 More about this Journal
Abstract
The intermittent characteristics of renewable energy complicates the process of balancing supply with demand. Electrolysis technology can provide flexibility to grid management by converting electricity to hydrogen. Alkaline electrolysis has been recognized as established technology and utilized in industry for over 100 years. However, high overpotential of oxygen evolution reaction in alkaline water electrolysis reduces the overall efficiency and therefore requires the development of anode catalyst. In this study, Raney Ni-Zn-Fe electrode was prepared by electroplating and the electrode characteristics was studied by varying electroplating parameters like electrodeposition time, current density and substrate. The prepared Raney Ni-Zn-Fe electrode was electrochemically evaluated using linear sweep voltammetry. Physical and chemical analysis were conducted by scanning electron microscope, energy dispersive spectrometer, and X-ray diffraction. The plating time did not changed the morphology and composition of the electrode surface and showed a little effect on overpotential reduction. As the plating current density increased, Fe content on the surface increased and cauliflower-like structure appeared on the electrode surface. In particular, the overpotential of the electrode, which was prepared at the plating current density of 320 mA/㎠, has showed the lowest value of 268 mV at 50 mA/㎠. There was no distinguishable overpotential difference between the type of substrate for the electrodes prepared at 80 mA/㎠.
Keywords
Alkaline water electrolysis; Oxygen evolution reaction; Electroplating; Ni-Zn-Fe alloy; Anode;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 X. Li, F. C. Walsh, and D. Pletcher, "Nickel based electrocatalysts for oxygen evolution in high current density, alkaline water electrolysers", Phys. Chem. Chem. Phys., Vol. 13, No. 3, 2011, pp. 1162-1167, doi: https://doi.org/10.1039/c0cp00993h.   DOI
2 M. S. Burke, L. J. Enman, A. S. Batchellor, S. Zou, and S. W. Boettcher, "Oxygen evolution reaction electrocatalysis on transition metal oxides and (Oxy)hydroxides: activity trends and design principles", Chem. Mater., Vol. 27, No. 22, 2015, pp. 7549-7558, doi: https://doi.org/10.1021/acs.chemmater.5b03148.   DOI
3 B. Zeifert, J. S. Blasquez, J. G. C. Moreno, and H. A. Calderon, "Raney-Nickel catalysts produced by mechanicl alloying", Rev.Adv.Mater.Sci., Vol. 18, 2008, pp. 632-638. Retrieved from https://www.researchgate.net/profile/Jose_Cabanas-Moreno/publication/267301499_Raney-nickel_catalysts_produced_by_mechanical_alloying/links/545454a40cf26d5090a55b16.pdf.
4 E. Endoh, H. Otouma, T. Morimoto, and Y. Oda, "New Raney nickel composite-coated electrode for hydrogen evolution", Int. J. Hydrogen Energy, Vol. 12, No. 7, 1987, pp. 473-479, doi: https://doi.org/10.1016/0360-3199(87)90044-9.   DOI
5 G. Sheela, M. Pushpavanam, and S. Pushpavanam, "Zinc-nickel alloy electrodeposits for water electrolysis", Int. J. Hydrogen Energy, Vol. 27, No. 6, 2002, pp. 627-633, doi:https://doi.org/10.1016/s0360-3199(01)00170-7.   DOI
6 R. Phillips and C. W. Dunnill, "Zero gap alkaline electrolysis cell design for renewable energy storage as hydrogen gas", RSC Advances, Vol. 6, No. 102, 2016, pp. 100643-100651, doi: https://doi.org/10.1039/c6ra22242k.   DOI
7 R. K. Shervedani and A. Lasia, "Evaluation of the surface roughness of microporous Ni-Zn-P electrodes by in situ methods", J. Appl. Electrochem., Vol. 29, No. 8, 1999, pp. 979-986, doi: https://doi.org/10.1023/a:1003577631897.   DOI
8 M. Lukaszewski, M. Soszko, and A. Czerwinski, "Electrochem ical m ethods of real surface area determination of noble metal electrodes - an overview", Int. J. Electrochem. Sci., Vol. 11, 2016, pp. 4442-4469, doi:https://doi.org/10.20964/2016.06.71.
9 N. Todoroki and T. Wadayama, "Oxygen reduction and oxygen evolution reaction activity on Co/Pt(111) surfaces in alkaline solution", The Electrochemical Society, Vol. 86, No. 13, 2018, pp. 569-574, doi: https://doi.org/10.1149/08613.0569ecst.
10 A. T. Swesi, J. Masud, and M. Nath, "Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction", Energy & Environmental Science, Vol. 9, No. 5, 2016, pp. 1771-1782, doi: https://doi.org/10.1039/c5ee02463c.   DOI
11 W. B. Han, H. S. Cho, W. C. Cho, and C. H. Kim, "Understanding the effect on hydrogen evolution reaction in alkaline medium of thickness of physical vapor deposited Al-Ni electrodes", Trans. of The Korean Hydrogen and New Energy Society, Vol. 28, No. 6, 2017, pp. 610-617, doi:https://doi.org/10.7316/KHNES.2017.28.6.610.   DOI
12 Z. Feng, Q. Li, J. Zhang, P. Yang, and M. An, "Electrochemical behaviors and properties of Zn-Ni alloys obtained from alkaline non-cyanide bath using 5,5'-dimethylhydantoin as complexing agent", J. Electrochem. Soc., Vol. 162, No. 9, 2015, pp. 412-422, doi: https://doi.org/10.1149/2.0121509jes.
13 J. Wang, G. D. Wilcox, R. J. Mortimer, C. Liu, and M. A. Ashworth, "Electrodeposition and characterisation of novel $Ni-NbO_x$ composite coatings as a diffusion barrier for liquid solder interconnects - part II: diffusion barrier performance", ECS Transactions, Vol. 64, No. 40, 2015, pp. 109-121, doi: https://doi.org/10.1149/06440.0109ecst.   DOI
14 A. Woyte, R. Belmans, and J. Nijs, "Fluctuations in instantaneous clearness index: analysis and statistics", Solar Energy, Vol. 81, No. 2, 2007, pp. 195-206, doi:https://doi.org/10.1016/j.solener.2006.03.001.   DOI
15 C. Srivastava, S. K. Ghosh, S. Rajak, A. K. Sahu, R. Tewari, V. Kain, and G. K. Dey, "Effect of pH on anomalous co-deposition and current efficiency during electrodeposition of Ni-Zn-P alloys", Surf. Coat. Technol., Vol. 313, 2017, pp. 8-16, doi: https://doi.org/10.1016/j.surfcoat.2017.01.043.   DOI
16 J. H. Park, "Characterization of mechanical property of ni metal mask fabricated by electroforming with different current densities", Master thesis, Sungkyunkwan University, Seoul, Korea, 2010. Retrieved from http://m.riss.kr/search/detail/DetailView.do?p_mat_type=be54d9b8bc7cdb09&control_no=62c9dc6853edb1e9ffe0bdc3ef48d419.
17 F. J. Perez-Alonso, C. Adan, S. Rojas, M. A. Pena, and J. L. G. Fierro, "Ni/Fe electrodes prepared by electrodeposition method over different substrates for oxygen evolution reaction in alkaline medium", Int. J. Hydrogen Energy, Vol. 39, No. 10, 2014, pp. 5204-5212, doi: https://doi.org/10.1016/j.ijhydene.2013.12.186.   DOI
18 T. K. Lee, J. W. Kim, K. K. Bae, C. S. Park, K. S. Kang, Y. H. Kim, and S. U. Jung, "Study on oxygen evolution reaction of Ni-Zn-Fe electrode for alkaline water electrolysis", Trans. of The Korean Hydrogen and New Energy Society, Vol. 29, No. 6, 2018, pp. 549-558, doi: https://doi.org/10.7316/KHNES.2018.29.6.549.   DOI
19 A. Schavan, "Germany's energy research plan", Science, Vol. 330, No. 6002, 2010, pp. 295, doi: https://doi.org/10.1126/science.1198075.   DOI
20 P. Milan, M. Wächter, and J. Peinke, "Turbulent character of wind energy", Phys. Rev. Lett., Vol. 110, 2013, pp. 138701, doi: https://doi.org/10.1103/PhysRevLett.110.138701.   DOI
21 D. M. F. Santos, C. A. C. Sequeira, and J. L. Figueiredo, "Hydrogen production by alkaline water electrolysis", Quim. Nova, Vol. 36, No. 8, 2013, pp. 1176-1193, doi:http://dx.doi.org/10.1590/S0100-40422013000800017.   DOI
22 L. Bi, S. Boulfrad, and E. Traversa, "Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides", Chem. Soc. Rev., Vol. 43, No. 24, 2014, pp. 8255-8270, doi: https://doi.org/10.1039/C4CS00194J.   DOI
23 M. Wang, Z. Wang, X. Gong, and Z. Guo, "The intensification technologies to water electrolysis for hydrogen production - a review", Renewable and Sustainable Energy Reviews, Vol. 29, 2014, pp.573-588, doi: https://doi.org/10.1016/j.rser.2013.08.090.   DOI
24 K. Zeng and D. Zhang, "Recent progress in alkaline water electrolysis for hydrogen production and applications", Prog. Energy Combust. Sci., Vol. 36, No. 3, 2010, pp. 307-326, doi: https://doi.org/10.1016/j.pecs.2009.11.002.   DOI
25 J. Kubisztal and A. Budniok, "Study of the oxygen evolution reaction on nickel-based composite coatings in alkaline media", Int. J. Hydrogen Energy, Vol. 33, No. 17, 2008, pp. 4488-4494, doi: https://doi.org/10.1016/j.ijhydene.2008.06.023.   DOI
26 O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson, and S. Few, "Future cost and performance of water electrolysis: an expert elicitation study", Int. J. Hydrogen Energy, Vol. 42, No. 52, 2017, pp. 30470-30492, doi:https://doi.org/10.1016/j.ijhydene.2017.10.045.   DOI
27 M. Gong and H. Dai, "A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts", Nano Res., Vol. 8, No. 1, 2015, pp. 23-39, doi: https://doi.org/10.1007/s12274-014-0591-z.   DOI
28 B. S. Yeo and A. T. Bell, "Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen", J. Am. Chem. Soc., Vol. 133, No. 14, 2011, pp. 5587-5593, doi: https://doi.org/10.1021/ja200559j.   DOI
29 V. Vij, S. Sultan, A. M. Harzandi, A. Meena, J. N. Tiwari, W. G. Lee, T. Yoon, and K. S. Kim, "Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions", ACS Catal., Vol. 7, No. 10, 2017, pp. 7196-7225, doi:https://doi.org/10.1021/acscatal.7b01800.   DOI
30 S. M. Fernandez-Valverde, E. Ordonez-Regil, G. Cabanas-Moreno, and O. Solorza-Feria, "Electrochemical behavior of Ni-Mo electrocatalyst for water electrolysis", J. Mex. Chem. Soc., Vol. 54, No. 3, 2010, pp. 169-174, doi:https://doi.org/10.29356/jmcs.v54i3.931.
31 D. A. Corrigan and R. M. Bendert, "Effect of coprecipitated metal ions on the electrochemistry of nickel hydroxide thin films: cyclic voltammetry in 1M KOH", J. Electrochem. Soc., Vol. 136, No. 3, 1989, pp. 723-728, doi: https://doi.org/10.1149/1.2096717.   DOI
32 B. K. Kim, S. K. Kim, S. K. Cho, and J. J. Kim, "Enhanced catalytic activity of electrodeposited Ni-Cu-P toward oxygen evolution reaction", Appl. Catal. B, Vol. 237, 2018, pp. 409-415, doi: https://doi.org/10.1016/j.apcatb.2018.05.082.   DOI