DOI QR코드

DOI QR Code

Cyclic Properties of Li[Co0.17Li0.28Mn0.55]O2 Cathode Material

  • Park, Yong-Joon (Power Source Device Team, Electronics and Telecommunications Research Institute) ;
  • Hong, Young-Sik (Power Source Device Team, Electronics and Telecommunications Research Institute) ;
  • Wu, Xiang-Lan (Power Source Device Team, Electronics and Telecommunications Research Institute) ;
  • Kim, Min-Gyu (Beamline Research Division, Pohang Accelerator Laboratory, Pohang University of Science and Technology) ;
  • Ryu, Kwang-Sun (Power Source Device Team, Electronics and Telecommunications Research Institute) ;
  • Chang, Soon-Ho (Power Source Device Team, Electronics and Telecommunications Research Institute)
  • Published : 2004.04.20

Abstract

A Li$[Co_{0.17}Li_{0.28}Mn_{0.55}]O_2$ cathode compound was prepared by a simple combustion method. The X-ray diffraction pattern showed that this compound could be classified as ${\alpha} -NaFeO_2$ structure type with the lattice constants of a = 2.8405(9) ${\AA}$ and c = 14.228(4) ${\AA}$. According to XANES analysis, the oxidation state of Mn and Co ions in the compound were 4+ and 3+, respectively. During the first charge process, the irreversible voltage plateau at around 4.65 V was observed. The similar voltage-plateau was observed in the initial charge profile of other solid solution series between $Li_2MnO_3\;and\;LiMnO_2$ (M=Ni, Cr...). The first discharge capacity was 187 mAh/g and the second discharge capacity increased to 204 mAh/g. As the increase of cycling number, one smooth discharge profile was converted to two distinct sub-plateaus and the discharge capacity was slowly decreased. From the Co and Mn K-edge XANES spectra measured at different cyclic process, it can be concluded that irreversible transformation of phase is occurred during continuous cycling process.

Keywords

References

  1. Lu, Z.; MacNeil, D. D.; Dahn, J. R. Electrochem. Solid-State Lett.2001, 4(11), A191. https://doi.org/10.1149/1.1407994
  2. Lu, Z.; Beaulieu, L. Y.; Donaberger, R. A.; Thomas, C. L.; Dahn,J. R. J. Electrochem. Soc. 2002, 149(6), A778. https://doi.org/10.1149/1.1471541
  3. Lu, Z.; Dahn, J. R. J. Electrochem. Soc. 2002, 149(11), A1454. https://doi.org/10.1149/1.1513557
  4. Lu, Z.; Dahn, J. R. J. Electrochem. Soc. 2002, 149(7), A815. https://doi.org/10.1149/1.1480014
  5. Lu, Z.; MacNeil, D. D.; Dahn, J. R. Electrochem. Solid-State Lett.2001, 4(12), A200. https://doi.org/10.1149/1.1413182
  6. MacNeil, D. D.; Lu, Z.; Dahn, J. R. J. Electrochem. Soc. 2002,149(10), A1332. https://doi.org/10.1149/1.1505633
  7. Paulsen, J. M.; Ammundsen, B.; Desilvestro, H.; Steiner, R.;Hassell, D. The Electrochemical Society Meeting Abstracts;Phoenix, AZ, Oct22-27, 2000; Vol 2000-2.
  8. Park, Y. J.; Hong, Y.-S.; Wu, X.; Ryu, K. S.; Chang, S. H. J. PowerSources 2004, accepted.
  9. Numata, K.; Sakaki, C.; Yamanaka, S. Chem. Lett. 1997, 725.
  10. Numata, K.; Sakaki, C.; Yamanaka, S. Solid State Ionics 1999,117, 257. https://doi.org/10.1016/S0167-2738(98)00417-2
  11. Kim, M. G.; Yo, C. H. J. Phys. Chem. B 1999, 103, 6457. https://doi.org/10.1021/jp990753b
  12. Manceau, A.; Corshkov, A. I.; Drits, V. A. Am. Miner. 1992, 77,1133.
  13. Hwang, S.-J.; Park, H.-S.; Choy, J.-H.; Campet, G. J. Phys. Chem.B 2001, 105, 335. https://doi.org/10.1021/jp002673+
  14. Ibarra-Palos, A.; Strobel, P.; Proux, O.; Hazemann, J. L.; Anne,M.; Morcrette, M. Electrochim. Acta 2002, 47, 3171. https://doi.org/10.1016/S0013-4686(02)00236-0
  15. Morcrette, M.; Barboux, P.; Perriere, J.; Brousse, T.; Traverse, A.;Boilot, J. P. Solid State Ionics 2001,138, 213. https://doi.org/10.1016/S0167-2738(00)00796-7
  16. Robertson, A. D.; Bruce, P. G. Chem. Mater. 2003, 15, 1984. https://doi.org/10.1021/cm030047u
  17. Ammundsen, B.; Paulsen, J. Adv. Mater. 2001, 13, 943. https://doi.org/10.1002/1521-4095(200107)13:12/13<943::AID-ADMA943>3.0.CO;2-J
  18. Balasubramanian, M.; McBreen, J.; Davidson, I. J.; Whitfield, P.S.; Kargina, I. J. Electrochem. Soc. 2002, 149, A176. https://doi.org/10.1149/1.1431962
  19. Shiraishi, Y.; Nakai, I.; Tsubata, T.; Himeda, T.; Nichikawa, F. J.Solid State Chem. 1997, 133, 587. https://doi.org/10.1006/jssc.1997.7615
  20. Park, Y. J.; Kim, M. G.; Hong, Y.-S.; Wu, X.; Ryu, K. S.; Chang,S. H. Solid State Commun. 2003, 127/7, 509. https://doi.org/10.1016/S0038-1098(03)00432-0
  21. Robertson, A. D.; Bruce, P. G. Chem. Commun. 2002, 2790.
  22. Armstrong, A. R.; Robertson, A. D.; Bruce, P. G. ElectrochemicaActa 1999, 45, 285. https://doi.org/10.1016/S0013-4686(99)00211-X
  23. Armstrong, A. R.; Robertson, A. D.; Gitzendanner, R.; Bruce, P.G. J. Solid State Chem. 1999, 145, 549. https://doi.org/10.1006/jssc.1999.8216
  24. Solid State Commun. v.127 no.7 Park, Y. J.; Kim, M. G.; Hong, Y.-S.; Wu, X.; Ryu, K. S.; Chang, S. H. https://doi.org/10.1016/S0038-1098(03)00432-0
  25. Chem. Commun. Robertson, A. D.; Bruce, P. G.
  26. Electrochemica Acta v.45 Armstrong, A. R.; Robertson, A. D.; Bruce, P. G. https://doi.org/10.1016/S0013-4686(99)00211-X
  27. J. Solid State Chem. v.145 Armstrong, A. R.; Robertson, A. D.; Gitzendanner, R.; Bruce, P. G. https://doi.org/10.1006/jssc.1999.8216

Cited by

  1. Structural Analysis of Li2MnO3 and Related Li-Mn-O Materials vol.158, pp.9, 2011, https://doi.org/10.1149/1.3609849
  2. Designing High-Capacity, Lithium-Ion Cathodes Using X-ray Absorption Spectroscopy vol.23, pp.24, 2011, https://doi.org/10.1021/cm2026703
  3. On the P2-NaxCo1-y(Mn2/3Ni1/3)yO2 cathode materials for sodium-ion batteries: Synthesis, electrochemical performance and redox processes occurring during the electrochemical cycling pp.1944-8252, 2017, https://doi.org/10.1021/acsami.7b13472
  4. Electrochemical Activities in Li[sub 2]MnO[sub 3] vol.156, pp.6, 2009, https://doi.org/10.1149/1.3110803
  5. Simple and Convenient Design of a Spectroelectrochemical Cell for In Situ XANES Measurements of Adsorbed Species in Transmission Mode vol.26, pp.4, 2004, https://doi.org/10.5012/bkcs.2005.26.4.671
  6. Li[Co0.50Li0.17Mn0.33]O2 양극물질의 고율 충방전 특성 vol.19, pp.8, 2004, https://doi.org/10.4313/jkem.2006.19.8.737