• Title/Summary/Keyword: Two-wheeled Mobile Robot

Search Result 87, Processing Time 0.03 seconds

Design of Multilayered Suspension Mechanism for Differential Type Mobile Robot

  • Park, Jin-Ho;Roh, Se-Gon;Park, Ki-Heung;Kim, Hong-Seok;Lee, Ho-Gil;Choi, Hyouk-Ryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.859-864
    • /
    • 2003
  • This paper presents a design for the novel suspension mechanism of a two-wheeled mobile robot having two casters which is used for indoor environment. Although the indoor environment is less rough than the outdoor one, the fixed caster mechanism has some problems such as causing the robot to be immovable because robot's driving wheels do not have contact with the ground. Therefore, we tried installing a spring-damper suspension mechanism to keep driving capability and to remove pitching phenomenon. However, this suspension mechanism also has the problem, which the robot body inclined by disturbances does not return to the initial position. To deal with above problems and to accomplish desired performances, we designed the Multilayered Suspension Mechanism, which has springs and dampers working partially according to the inclined angle and angular velocity of robot body concerned with pitching. To analyze design, the equations of motion describing their dynamics were developed. Using the equations, simulation results show the improved performance. We confirm the usefulness of the Multilayered Suspension Mechanism by construction and test of a actual prototype.

  • PDF

The Wheeled Inverted Pendulum Mobile Robot Control Using Gyroscope and Accelerometer Sensor (자이로와 가속도 센서를 이용한 차륜형 도립진자 이동로봇 제어)

  • Yu, Hwan-Shin;Park, Hyung-Bae
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.4
    • /
    • pp.703-708
    • /
    • 2012
  • This paper proposes the improvement of control performance in the wheeled inverted mobile robot system. and describes the modeling of a wheeled inverted pendulum type mobile robot driven by two different wheels for the position and velocity control. The system is sensitive on the parameter variation, therefore control signal should change to maintain desired state of the system in every instant. we designed proportional-plus-integral controller for our system, After linearization, the system was still unstable, throughout stability analysis of the system, we designed the values of the gains of a proportional-plus-integral controller. From the experimental results, we can find that the performance of the proposed method is better than of the manual tuning method.

Fuzzy Modeling and Control of Wheeled Mobile Robot

  • Kang, Jin-Shik
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.58-65
    • /
    • 2003
  • In this paper, a new model, which is a Takagi-Sugeno fuzzy model, for mobile robot is presented. A controller, consisting of two loops the one of which is the inner state feedback loop designed for stability and the outer loop is a PI controller designed for tracking the reference input, is suggested. Because the robot dynamics is nonlinear, it requires the controller to be insensitive to the nonlinear term. To achieve this objective, the model is developed by well known T-S fuzzy model. The design algorithm of inner state-feedback loop is regional pole-placement. In this paper, regions, for which poles of the inner state feedback loop are lie in, are formulated by LMI's. By solving these LMI's, we can obtain the state feedback gains for T-S fuzzy system. And this paper shows that the PI controller is equivalent to the state feedback and the cost function for reference tracking is equivalent to the LQ(linear quadratic) cost. By using these properties, it is also shown in this paper that the PI controller can be obtained by solving the LQ problem.

Modeling and Adaptive Motion Tracking Control of Two-Wheeled Welding Mobile Robot (WMR) (용접용 이륜 이동로봇의 모델링 및 적응 추종 제어)

  • Suh, Jin-Ho;Bui, Tring Hieu;Nguyen, Tan Tien;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.786-791
    • /
    • 2003
  • This paper proposes an adaptive control algorithm for nonholonomic mobile robots with unknown parameters and the proposed control method is used in numerical simulations for applying to a practical twowheeled welding mobile robot(WMR). The proposed adaptive controller to track an arbitrary given welding path is designed by using back-stepping technique and is derived for a nonlinear model under the assumption such that the system parameters are partially known. Moreover, the proposed adaptive control system is stable in the sense of Lyapunov stability. Inertia moments of system are considered to be unknown parameters and their values can be estimated simply by using update laws proposed in an adaptive control scheme of this research. The simulation results are provided to show the effectiveness of the accurate tracking capability of the proposed controller for two-wheeled welding mobile robot with a smooth curved reference welding path.

  • PDF

A study on the Posture control of a two-wheeled mobile robot (양바퀴 이동로봇의 자세제어에 대한 연구)

  • Joo, Jin-Hwa
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.6
    • /
    • pp.587-593
    • /
    • 2017
  • In this paper, we propose a method to solve the difficulties in constructing an environment capable of practical training on the theoretical contents of robot control field. We make a two-wheeled mobile robot with Segway structure using LEGO block. In order to demonstrate the validity of using the developed robot as a practical application of advanced control theory of robotics education such as dynamic system and nonlinear system, the robot takes a stable posture while balancing the change of gravity during running. The results of the experiment are shown. By presenting the results, the robots made using the LEGO block are used for practical training of advanced control theory of robotics. It can be used as a tool.

Path-Following using Path-Observer for Wheeled Mobile Robots (경로 관측기를 이용한 차륜형 이동 로봇의 경로 추종)

  • Lim, Mee-Seub;Lim, Joon-Hong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.11
    • /
    • pp.1448-1456
    • /
    • 1999
  • In this paper, we propose a new technique for path-following of the wheeled mobile robot systems with nonholonomic constraints using a path-observer. We discuss the path-following problems of the nonholonomic mobile robot systems which have two nonsteerable, independently driven wheels with the various initial conditions such as a position, a heading angle, and a velocity. It is shown that the performance of dynamic path-following importantly is affected by the intial conditions. Particularly, if the initial conditions become more distant from the desired path and the desired velocity become faster, the system is shown to have worse performance and small time local stable. To find the controllable and stable control for path-following with various initial configuration, we propose the path-observer which can be used for control of the stable path-following of nonholonomic mobile robot system with the various initial conditions. The proposed scheme exhibits the efficient path-following properties for nonholonomic mobile robot in any intial conditions. The simulation results demonstrate the effectiveness of the proposed method for dynamic path-following tasks with the various initial conditions.

  • PDF

A Precision Control of Wheeled Mobile Robots Using Neural Network (신경회로망을 이용한 이동로봇의 정밀 제어)

  • Kim, Moo-Jon;Lee, Young-Jin;Park, Sung-Jun;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.8
    • /
    • pp.689-696
    • /
    • 2000
  • In this paper we propose an eminent controller for wheeled mobile robots. This controller consists of an input-output linearization controller trying to stabilize the system and a neural network controller to compensate for uncertainties. The uncertainties are divided into two parts. First unstructured uncertainties include the elements related with system order such as friction disturbance. Second structure uncertainties are the incorrect system parameters A neural network structure of the proposed overall controller learns structural errors of the wheeled mobile robots with uncertainties and includes the neural network output. This controller learns quickly the model and has good tracking performance Simulation results show that the proposed controller is more efficient than analog controllers.

  • PDF

A Posture Control for Two Wheeled Mobile Robots

  • Shim, Hyun-Sik;Sung, Yoon-Gyeoung
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.201-206
    • /
    • 2000
  • In this paper, a posture control for nonholonomic mobile robots is proposed with an empirical basis. In order to obtain fast and consecutive motions in realistic applications, the motion requirements of a mobile robot are defined. Under the assumption of a velocity controller designed with the selection guidance of control parameters, the algorithm of posture control is presented and experimentally demonstrated for practicality and effectiveness.

  • PDF

Two-Wheeled Welding Mobile Robot for Tracking a Smooth Curved Welding Path Using Adaptive Sliding-Mode Control Technique

  • Dung, Ngo Manh;Duy, Vo Hoang;Phuong, Nguyen Thanh;Kim, Sang-Bong;Oh, Myung-Suck
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.3
    • /
    • pp.283-294
    • /
    • 2007
  • In this paper, a nonlinear controller based on adaptive sliding-mode method which has a sliding surface vector including new boundizing function is proposed and applied to a two-wheeled welding mobile robot (WMR). This controller makes the welding point of WMR achieve tracking a reference point which is moving on a smooth curved welding path with a desired constant velocity. The mobile robot is considered in view of a kinematic model and a dynamic model in Cartesian coordinates. The proposed controller can overcome uncertainties and external disturbances by adaptive sliding-mode technique. To design the controller, the tracking error vector is defined, and then the sliding surface vector including new boundizing function and the adaptation laws are chosen to guarantee that the error vector converges to zero asymptotically. The stability of the dynamic system is shown through the Lyapunov method. In addition, a simple way of measuring the errors by potentiometers is introduced. The simulations and experimental results are shown to prove the effectiveness of the proposed controller.

Real time control of a mobile robot considering dynamics (3축 이동로보트의 동역할을 고려한 실시간 제어)

  • Cha, Y.Y.;Gweon, D.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.190-199
    • /
    • 1993
  • In this study a three-axes mobile robot which has two independently controlled driving wheels and a function of simultaneously steering the driving wheels has been developed. Two-motion modes of the mobile robot, the first is a differential velocity motion of two driving wheels and the second is a equal driving and steering motion, have been analyzed and the kinematic and dymanic analyses about the each motion mode have been carried out. As a result of dynamic analysis, the torque used on a motor control and acceleration have been derived explicitly. Hence, a computation time is saved effectively and a real time control of the mobile robot considering the dynamics has become possible. Through a simulation the results considering the dynamics have been compared with that no regarding the dynamics and the possibility of real-time control has been proved.

  • PDF