• Title/Summary/Keyword: Two-step optimization

Search Result 248, Processing Time 0.025 seconds

A fast damage detecting technique for indeterminate trusses

  • Naderi, Arash;Sohrabi, Mohammad Reza;Ghasemi, Mohammad Reza;Dizangian, Babak
    • Structural Engineering and Mechanics
    • /
    • v.75 no.5
    • /
    • pp.585-594
    • /
    • 2020
  • Detecting the damage of indeterminate trusses is of major importance in the literature. This paper proposes a quick approach in this regard, utilizing a precise mathematical approach based on Finite Element Method. Different to a general two-step method defined in the literature essentially based on optimization approach, this method consists of three steps including Damage-Suspected Element Identification step, Imminent Damaged Element Identification step, and finally, Damage Severity Detection step and does not need any optimizing algorithm. The first step focuses on the identification of damage-suspected elements using an index based on modal residual force vector. In the second step, imminent damage elements are identified among the damage-suspected elements detected in the previous step using a specific technique. Ultimately, in the third step, a novel relation is derived to calculate the damage severity of each imminent damaged element. To show the efficiency and quick function of the proposed method, three examples including a 25-bar planar truss, a 31-bar planar truss, and a 52-bar space truss are studied; results of which indicate that the method is innovatively capable of suitably detecting, for indeterminate trusses, not only damaged elements but also their individual damage severity by carrying out solely one analysis.

A two-stage structural damage detection method using dynamic responses based on Kalman filter and particle swarm optimization

  • Beygzadeh, Sahar;Torkzadeh, Peyman;Salajegheh, Eysa
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.593-607
    • /
    • 2022
  • To solve the problem of detecting structural damage, a two-stage method using the Kalman filter and Particle Swarm Optimization (PSO) is proposed. In this method, the first PSO population is enhanced using the Kalman filter method based on dynamic responses. Due to noise in the sensor responses and errors in the damage detection process, the accuracy of the damage detection process is reduced. This method proposes a novel approach for solve this problem by integrating the Kalman filter and sensitivity analysis. In the Kalman filter, an approximate damage equation is considered as the equation of state and the damage detection equation based on sensitivity analysis is considered as the observation equation. The first population of PSO are the random damage scenarios. These damage scenarios are estimated using a step of the Kalman filter. The results of this stage are then used to detect the exact location of the damage and its severity with the PSO algorithm. The efficiency of the proposed method is investigated using three numerical examples: a 31-element planer truss, a 52-element space dome, and a 56-element space truss. In these examples, damage is detected for several scenarios in two states: using the no noise responses and using the noisy responses. The results show that the precision and efficiency of the proposed method are appropriate in structural damage detection.

Shape Optimization of an Air Conditioner Piping System (에어컨 배관 시스템의 형상 최적설계)

  • Min, Jun-Hong;Choi, Dong-Hoon;Jung, Du-Han
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1151-1157
    • /
    • 2009
  • Ensuring both product quality and reducing material cost are important issue for the design of the piping system of an air conditioner outdoor unit. This paper describes a shape optimization that achieves mass reduction of an air conditioner piping system while satisfying two design constraints on resonance avoidance and the maximum stress in the pipes. In order to obtain optimized design results with various analysis fields considered simultaneously, an automated multidisciplinary analysis system was constructed using PIAnO v.2.4, a commercial process integration and design optimization(PIDO) tool. As the first step of the automated analysis system, a finite element model is automatically generated corresponding to the specified shape of the pipes using a morphing technique included in HyperMesh. Then, the performance indices representing various design requirements (e.g. natural frequency, maximum stress and pipe mass) are obtained from the finite element analyses using appropriate computer-aided engineering(CAE) tools. A sequential approximate optimization(SAO) method was employed to effectively obtain the optimum design. As a result, the pipe mass was reduced by 18 % compared with that of an initial design while all the constraints were satisfied.

Performance Evaluation of Control Allocation Methods on DURUMI-II UAV (두루미-II 무인기 기반의 조종력 할당 기법 성능 평가)

  • Min, Byoung-Mun;Kim, Eung-Tai;Lee, Jang-Ho;Tank, Min-Jea
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.107-114
    • /
    • 2007
  • This paper focuses on the performance evaluation of various control allocation methods applied on DURUMI-II UAV system. In order to implement control allocation scheme to aircraft control system, control system can be designed through two step design procedure. The first step is to design a baseline control system for an aircraft without consideration of control surface failure. The second step is to design a control allocator that maps the total control command on the individual control surfaces. In this paper, several control allocation methods such as Psuedo-Inverse CA method, Direct CA method, and Optimization CA method are implemented and integrated to the baseline flight control system of DURUMI-II UAV. The performance of these control allocation methods is evaluated by nonlinear simulation under the flight scenario of control surface failure.

Timing Window Shifting by Gate Sizing for Crosstalk Avoidance (크로스톡 회피를 위한 게이트 사이징을 이용한 타이밍 윈도우 이동)

  • Zang, Na-Eun;Kim, Ju-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.11
    • /
    • pp.119-126
    • /
    • 2007
  • This paper presents an efficient heuristic algorithm to avoid crosstalk which effects to delay of CMOS digital circuit by downsizing and upsizing of Gate. The proposed algorithm divide into two step, step1 performs downsizing of gate, step2 performs upsizing, so that avoid adjacent aggressor to critical path in series. The proposed algorithm has been verified on LGSynth91 benchmark circuits and Experimental results show an average 8.64% Crosstalk Avoidance effect. This result proved new potential of proposed algorithm.

A Boolean Logic Extraction for Multiple-level Logic Optimization (다변수 출력 함수에서 공통 논리식 추출)

  • Kwon, Oh-Hyeong
    • Journal of the Korea Computer Industry Society
    • /
    • v.7 no.5
    • /
    • pp.473-480
    • /
    • 2006
  • Extraction is tile most important step in global minimization. Its approache is to identify and extract subexpressions, which are multiple-cubes or single-cubes, common to two or more expressions which can be used to reduce the total number of literals in a Boolean network. Extraction is described as either algebraic or Boolean according to the trade-off between run-time and optimization. Boolean extraction is capable of providing better results, but difficulty in finding common Boolean divisors arises. In this paper, we present a new method for Boolean extraction to remove the difficulty. The key idea is to identify and extract two-cube Boolean subexpression pairs from each expression in a Boolean network. Experimental results show the improvements in the literal counts over the extraction in SIS for some benchmark circuits.

  • PDF

Flow Analysis for the Geometry Optimization of Combustion Chamber of Central Flow Type Waste Incinerator (중간류식 폐기물 소각로 연소실의 최적형상 설계를 위한 유동해석)

  • Lee, Jin-Uk;Kim, Seong-Bae;Yun, Yong-Seung;Kim, Hyeon-Jin;Heo, Il-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.252-259
    • /
    • 2001
  • Computational study has been performed to observe the flow characteristics of combustion chamber for geometrical modification in municipal solid waste incinerator. A series of geometrical modification has been carried out as an attempt to reduce the size of recirculation zone, to obtain uniform flow field in the secondary combustion chamber and to improve the mixing of combustion gas. Two dimensional non-reacting turbulent flow has been studied as the first step to get such goals and the result of design optimization is presented. In addition, three dimensional non-reacting and reacting flow analyses were performed to verify the validity of two dimensional approach.

A New Distance Measure for a Variable-Sized Acoustic Model Based on MDL Technique

  • Cho, Hoon-Young;Kim, Sang-Hun
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.795-800
    • /
    • 2010
  • Embedding a large vocabulary speech recognition system in mobile devices requires a reduced acoustic model obtained by eliminating redundant model parameters. In conventional optimization methods based on the minimum description length (MDL) criterion, a binary Gaussian tree is built at each state of a hidden Markov model by iteratively finding and merging similar mixture components. An optimal subset of the tree nodes is then selected to generate a downsized acoustic model. To obtain a better binary Gaussian tree by improving the process of finding the most similar Gaussian components, this paper proposes a new distance measure that exploits the difference in likelihood values for cases before and after two components are combined. The mixture weight of Gaussian components is also introduced in the component merging step. Experimental results show that the proposed method outperforms MDL-based optimization using either a Kullback-Leibler (KL) divergence or weighted KL divergence measure. The proposed method could also reduce the acoustic model size by 50% with less than a 1.5% increase in error rate compared to a baseline system.

Process optimization of PSA way Oxygen Concentrator for Electric Power Saving (전력 절감을 위한 PSA방식의 산소 발생기 공정 최적화)

  • Chi, Seok-Hwan;Lee, Moon-Kyu;Lee, Tae-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1350-1354
    • /
    • 2007
  • As the importance of low power design is emphasized, power consumption became one of the standards that represent the performance of the system. The purpose of this study is to decide design variable that minimize power consumption for the oxygen concentrator in two bed-one compressor 8 step PSA process that has above 90% purity at 3lpm by using given constants and selected parameters. Setting selected parameters as cycle time and equalization time, optimization for PSA process in the oxygen concentrator is progressed. For this, we need to know the features and basic principals of PSA process and to deduce objective function of performance analysis. Validations for objective function and lots of experiments are needed too. By using the characteristic curve of the compressor and the pressure curve of the process for 1 cycle, objective function was set. After theoretical 2 dimensional optimized paths was obtained. And then, by experiment, theoretical optimized path was verified.

  • PDF

Multi-Objective and Multi-Level Optimization for Steel Frames Using Sensitivity Analysis of Dynamic Properties (동특성 민감도 해석을 이용한 전단형 철골구조물의 다목적 다단계 최적설계)

  • Cho, Hyo-Nam;Chung, Jee-Seung;Min, Dae-Hong;Kim, Hyun-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.333-342
    • /
    • 1999
  • An improved optimization algorithm for multi-objective and multi-level (MO/ML) optimum design of steel frames is proposed in this paper. In order to optimize the steel frames under seismic load, two main objective functions need to be considered for minimizing the structural weight and maximizing the strain energy. For the efficiency of the proposed method, well known multi-level optimization techniques using decomposition method that separately utilizes both system-level and element-level optimizations and an artificial constraint deletion technique are incorporated in the algorithm. And also dynamic analysis is executed to evaluate the implicit function of structural strain energy at each iteration step. To save the numerical efforts, an efficient reanalysis technique through sensitivity analysis of dynamic properties is unposed in the paper. The efficiency and robustness of the improved MOML algorithm, compared with a plain MOML algorithm, is successfully demonstrated in the numerical examples.

  • PDF