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Embedding a large vocabulary speech recognition 
system in mobile devices requires a reduced acoustic 
model obtained by eliminating redundant model 
parameters. In conventional optimization methods based 
on the minimum description length (MDL) criterion, a 
binary Gaussian tree is built at each state of a hidden 
Markov model by iteratively finding and merging similar 
mixture components. An optimal subset of the tree nodes 
is then selected to generate a downsized acoustic model. To 
obtain a better binary Gaussian tree by improving the 
process of finding the most similar Gaussian components, 
this paper proposes a new distance measure that exploits 
the difference in likelihood values for cases before and 
after two components are combined. The mixture weight 
of Gaussian components is also introduced in the 
component merging step. Experimental results show that 
the proposed method outperforms MDL-based 
optimization using either a Kullback-Leibler (KL) 
divergence or weighted KL divergence measure. The 
proposed method could also reduce the acoustic model size 
by 50% with less than a 1.5% increase in error rate 
compared to a baseline system. 
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I. Introduction 

Most contemporary speech recognizers are based on hidden 
Markov models (HMM). In continuous speech recognition 
tasks with large vocabularies, several tens of thousands of 
words and their pronunciations form a dictionary. HMM-based 
acoustic phone models are trained to obtain the statistical 
distributions of acoustic instances of each phone. In the 
decoding step, an input speech signal is represented as a 
sequence of feature vectors, and a series of words are searched 
from a network that is composed of a whole acoustic model set, 
a pronunciation lexicon, and a language model.  

In many large-vocabulary continuous speech recognition 
systems, tied-state context-dependent triphone models have 
been used, where the number of unique HMM states ranges 
from 2,000 to 6,000, each of which is a mixture of about 8 to 
64 Gaussian components. Since the likelihood score of each 
HMM state should be calculated at every frame in the 
decoding step, it is reported that 30% to 70% of the total 
recognition time is spent by the likelihood estimation [1]. 
Therefore, there have been many studies on reducing the 
number of Gaussian components in HMM states with a 
minimal loss of recognition accuracy. As more ASR systems 
are being developed for mobile devices where memory size 
and computational power are limited, an efficient reduction of 
acoustic model size is becoming more important [2]. 

Among several previous well-known studies related to the 
acoustic model reduction problem, the semi-continuous HMM 
technique shares a codebook of Gaussian mixture components 
across all models [1]. A variant of this approach is merging the 
Gaussian components in such a way that likelihood loss is 
minimized, and only the covariance terms are shared. It is 
reported that when the covariances are tied, not only is the 
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parameter size reduced, but the covariance also becomes more 
robust [3]. A greedy clustering method iteratively finds and 
merges a pair of Gaussian components with the smallest value 
of the cost function until a target number of Gaussians is 
reached [4]. Similarly, the Gaussian components of each state 
are clustered into a binary tree, and a subset of the components 
is chosen from the Gaussian tree on the basis of the minimum 
description length (MDL) criterion [5]-[8]. This technique 
could reduce the model size by 50% to 75% with only a slight 
degradation in accuracy. The MDL criterion is closely related 
to the Bayesian information criterion and Akaike information 
criterion. The differences and similarities between them are 
discussed in [8]. Another direction of optimization might be 
sub-vector clustering techniques that tie the model parameters 
even at a granularity finer than a Gaussian component, 
reducing the amount of quantization errors [9], [10]. 

In the framework of MDL-based optimization, one of the 
major issues is distance measures for finding a pair of the 
closest components when building a binary Gaussian tree in 
each state. Several distance measures such as Kullback-Leibler 
(KL) divergence, Bhattacharyya distance, and weighted KL 
(wKL) divergence have been compared. The wKL divergence 
gave the best performance among these, as the other two 
measures neglect the weight term of a Gaussian mixture 
component [5]-[8], [11]. 

Once a binary tree is constructed and fixed, the next step 
only traverses the tree nodes and selects their optimal subset. 
Therefore, the topology of the resultant binary Gaussian tree is 
very important. The topology is determined by the distance 
measure used, along with the component merging method. 

Since the main purpose of choosing a better distance 
measure is to find a pair of components that gives the 
minimum difference in likelihood of the state before and after 
merging, we propose another distance measure that directly 
exploits the likelihood change and thus improves the topology 
of binary Gaussian trees. 

The rest of this paper is organized as follows. Section II 
describes the overall optimization procedure of an acoustic 
model based on the MDL technique. Section III discusses 
previous similarity measures for binary mixture component 
tree building and the proposed method. Section IV reviews the 
MDL criterion for pruning the binary tree in order to optimally 
reduce the model parameters. In section V, we compare the 
performances of the proposed method with the previous 
approaches. Finally, section VI concludes this paper. 

II. Overview of Model Parameter Reduction 

As mentioned earlier, many acoustic model optimization 
methods first build a best model using as many parameters as  

 

 

Fig. 1. Binary Gaussian mixture tree built at an HMM state. 
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possible. After that, some of the redundant parameters are either 
removed or merged according to a given criterion [6], [12].  

Let us assume that there are R Gaussian mixture components 
in an arbitrary HMM state as shown in Fig. 1. Among all 
possible pairs of mixture components, the closest pair should be 
found and then merged. At this stage, we need to have an 
appropriate similarity measure and component merging method. 
Let the two closest components be gp 

and gq, which are merged 
into a parent node gr. The closest pair is searched again from the 
remaining R–2 components and the newly generated parent 
node. This process continues until we have a single root node.  

Once a binary tree is constructed, the next step is pruning the 
tree according to the MDL criterion. Beginning from the root 
node, the process calculates the description length change of 
splitting a node into its children nodes. If the difference 
between description lengths before and after the splitting is 
positive, it means that the total description length is becoming 
larger. Therefore, the splitting is stopped at the node. Otherwise, 
the splitting repeats for each of the children nodes until no 
nodes remain to process. 

A binary tree is constructed for each HMM state, and 
optimization on the number of Gaussian components in each 
state is performed in such a way that the total number of 
Gaussian mixture components included in an entire acoustic 
model meets a predetermined value. 

The performance of this optimization technique depends on 
the quality of the binary tree constructed in each HMM state 
and an effective pruning technique. The former is very 
important, because once a tree is built, the pruning process has 
no choice but to follow the edges of the tree and cut off some 
redundant branches. 

Distance measures and an estimation of the model 
parameters used for merged components are the two main 
factors influencing the quality of a binary tree. Therefore, in the 
following section, we discuss the previous distance measures 
and the component merging method used in building a binary 
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tree. Then, we propose a new distance measure and component 
merging method to improve binary tree quality. 

III. Distance Measures and Component Merging  

1. Conventional Distance Measures 

Let s be an HMM state that is composed of M Gaussian 
mixture components. The likelihood score of an observation 
feature vector x is calculated as 
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where ,mw ,mμ and mσ are the mixture weight, mean vector, 
and covariance matrix of the m-th Gaussian mixture 
component, respectively. 

If we denote the two arbitrary Gaussian components by 
 Gp(x)

 
and Gq(x), the KL divergence between the two 

distributions is defined as 
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where D indicates the dimension of the feature vector. 
Recently, the weight term of a Gaussian mixture component 

was added to (2) [5]. This wKL divergence is defined as  
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As is mentioned in [5], it is necessary to find a pair of mixture 
components that gives the minimum difference in likelihood 

before and after the two components are merged. It is obvious 
that the likelihood calculation will be more accurate when the 
KL divergence considers the mixture weights, as in (3). 

2. Conventional Component Merging Method 

After the two closest Gaussian components are found, the 
pair should be merged into a single Gaussian component to 
form a parent node. The mean and covariance of the new 
component [6] are obtained by 
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where Mk=2 because only two components are merged in the 
binary tree case. If the tree type is not restricted to a binary tree, 
the value for Mk is the number of children nodes for a given 
node. 

3. Proposed Distance Measure and Merging Method 

Let us recall that the purpose of a distance measure is to find 
a pair of Gaussian components that shows the least change in 
likelihood scores after the two components are merged. We 
propose another similarity measure that directly exploits the 
change in likelihood score before and after the component 
merging. We call it a delta-likelihood (DL) distance measure.  

Assuming that 1 2{ , , , }p N= …X x x x  and ( )pγ x  are a set 
of feature vectors aligned to a Gaussian component gp and the 
occupancy count of a feature vector at the component, 
respectively, the log likelihood can be obtained as follows [3]. 
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where D is the dimension of the feature vectors,
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and pσ  is the covariance of the Gaussian component. 
Assuming also that two Gaussian components gp and gq are 

merged into gr, the difference of the log likelihood before and 
after the merging can be expressed as  
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We propose using the above quantity as the cost of merging the 
two Gaussian components. If the cost is small, it means the two 
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components are close enough to be combined. Since the 
occupancy values, pγ  and ,qγ  are often not available, the 
proposed DL measure uses the Gaussian mixture weights, wp 
and wp, instead, because they have similar meaning. The 
proposed DL distance measure is defined as 
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The proposed distance measure always has a zero or positive 
value since the likelihood score is larger when a given data is 
represented with twice the parameters.  

Finally, (8) through (10) are the proposed component 
merging method for any number of Gaussian components. 
Unlike the previous merging method, the proposed merging 
technique considers weight terms of the Gaussian mixture. 
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Comparing (8) through (10) with (4), we notice that the 
previous merging method is a special case of applying  

( ) 1 .k
m kM constα = =  into (9) and (10). 

IV. MDL Criterion for Tree Pruning 

Once a binary tree is constructed, the description length for 
each subset of all the tree nodes is calculated, and the node set 
which has an MDL is selected. Let 1 2{ , , , }N= …X x x x be a 
series of data, and 1 2{ , , , }kλ λ λ λ= …  be a set of estimated 
model parameters to represent data x. The MDL criterion 
function [7], [13] is defined as  

,
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Because the probability is higher as the modeling power is 
increased for a given data set, the first term on the right side of 
the equation will decrease as the complexity of the model 
increases. In the second term, k is the number of model 
parameters. In HMM-based speech recognition, k is the total 

 

Fig. 2. MDL criterion functions for three penalty values: optimal 
number of total Gaussian components is different. 
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number of Gaussian mean vectors and covariance matrices. 
This term increases as the model has more parameters and 
works as a penalty for increasing the model complexity. The α 
value controls the degree of penalty. The last term, C, is a 
constant. Figure 2 shows three examples of the MDL criterion 
function. We can see that the optimum points of the graphs are 
determined by the α value. 

V. Experiments 

To evaluate the proposed and previous optimization methods, 
we performed speech recognition experiments on the travel 
domain. HMM models were trained using version 3.4.1 of the 
HMM toolkit (HTK). Multiple speech databases related to the 
travel domain including the Wall Street Journal and TIMIT 
database were used for the acoustic model training. The total 
size of the training data was about 330 hours. We extracted 39 
dimensional mel-frequency cepstral coefficient features. Tied-
state context-dependent triphone HMMs were generated 
through the model training process.  

The baseline system consisted of 17,159 physical triphone 
models, where the number of unique states was 4,554. Since 
we used 16 Gaussian components in each state, the total 
number of Gaussian components was 72,864. We used 
776,000 sentences to build a 3-gram language model. The 
HDecode utility from the HTK was used for the recognition 
experiments. Lastly, the test data were made up of 200 
sentences from a travel-domain speech database collected in a 
laboratory environment. 

Table 1 presents the speech recognition performances for 
four different methods used when building a binary tree at each 
state: the baseline and three MDL-based optimization methods 
using KL divergence, wKL divergence, and the proposed DL 
distance measures. In this experiment, no extra iterations of 
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Table 1. Word accuracies of baseline system, KL, wKL, and DL
distance measures in MDL-based optimization.
Performances without retraining optimized models. 

Average no. of 
mixtures/state Baseline KL wKL 

DL 
(proposed)

16 81.51 – – – 

12 79.45 80.59 81.02 81.13 

8 69.47 78.58 78.52 78.63 

4 62.26 69.74 72.78 74.35 

Table 2. Word accuracies of baseline system, KL, wKL, and DL
distance measures in MDL-based optimization.
Performances after three iterations of model retraining. 

Average no. of 
mixtures/state Baseline KL wKL 

DL 
(proposed)

16 81.51 – – – 

12 79.45 81.13 81.29 81.62 

8 69.47 79.18 79.72 79.12 

4 62.26 72.45 74.67 75.22 

 

model training were done after the optimized models were 
generated. All the comparisons in this paper were fulfilled 
using the same weighted component merging method. Since 
the number of Gaussian components is variable among HMM 
states, the table shows the word accuracies when the averaged 
numbers of mixture components are 16, 12, 8, and 4.  

As we reported, the wKL divergence showed a better 
optimization performance than the KL divergence. This means 
that the quality of binary trees that are built at each state is 
better with the wKL measure than with the KL measure. The 
proposed DL distance measure showed an improved 
performance over the wKL because it better optimizes the 
difference in likelihood values while binary Gaussian trees are 
generated. 

Table 2 shows the word accuracies when three iterations of 
maximum likelihood retraining were performed after the new 
models had been generated. Model retraining can be 
considered when the training database is available at the model 
optimization step, though in some cases, the training data are 
no more accessible. The results show that after three iterations, 
the performances are not degraded much when the model 
parameters are reduced to 75% of the original model. The 
proposed method could reduce the acoustic model size by 50% 
with less than a 2.4% increase in error rate compared to the 
baseline system. Compared with Table 1, the performances 
were improved after the retraining. 

Figure 3 shows the word accuracies of the baseline 

 

Fig. 3. Word accuracies of proposed method, conventional MDL-
based method using wKL distance, and baseline system 
over various numbers of mixture components. 
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Table 3. Word accuracies of wKL and DL distance measures in 
MDL-based optimization using a WFST-based decoder.
The accuracy is 88.73% and averaged RTF is 0.86 for a 
baseline system. 

Average no. of
mixtures/state

Total no. 
of mixtures

wKL 
DL 

(proposed)
Average

RTF 
16 79,424 – – 0.86 

12 59,568 88.18 88.34 0.74 

8 39,713 86.98 87.26 0.59 

4 19,856 84.78 85.69 0.34 

 
recognition system, the previous MDL-based method using the 
wKL divergence, and the proposed method as the average 
number of Gaussian components per state is decreased. Both of 
the MDL-based optimization methods improve the word 
accuracy of the baseline system by more than 10% when the 
model size is downsized to a quarter of the original system. 
The DL method consistently showed a higher performance 
than the previous wKL divergence in the framework of MDL-
based optimization. 

Finally, we evaluated the proposed method using a larger test 
set. The test set consisted of 1,446 English sentences. The 
average sentence length was 9.13 words. In this experiment, 
we used a one-pass decoder based on a weighted finite-state 
transducer instead of the HTK in order to examine the 
dependency of the proposed method on different decoders. We 
used the same training data for the baseline acoustic model as 
in the above experiments. The real-time factors (RTF) of the 
test utterances were also measured to check the effectiveness of 
the proposed method. 

The results are summarized in Table 3. The proposed method 
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showed better accuracy than the wKL measure. Compared 
with the HDecode of the HTK, the performance using a 
WFST-based one-pass decoder was less degraded. Since the 
averaged RTFs of the two methods were almost the same, we 
show the RTFs of only the proposed method. It is clear that the 
overall recognition speed improves with the reduction of 
Gaussian mixture components. 

VI. Conclusion 

In this paper, we proposed a delta-likelihood distance 
measure and a weighted component merging method in the 
framework of minimum-description-length (MDL)-based 
model parameter optimization. Experimental results showed 
that the proposed method could reduce the acoustic model size 
by 50% with less than a 1.5% increase in error rate in 
comparison to the baseline system. Furthermore, it consistently 
showed higher performances than the previous MDL-based 
method using the weighted KL divergence distance measure.  
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