• Title/Summary/Keyword: Two-loop controller

Search Result 294, Processing Time 0.027 seconds

LQR Controller Design with Pole-Placement (극배치 특성을 갖는 LQR 제어기 설계)

  • Park, Mun-Soo;Park, Duck-Gee;Hong, Suk-Kyo;Lee, Sang-Hyuk;Park, Min-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.574-580
    • /
    • 2007
  • This paper deals with LQR controller design method tor system having complex poles. The proposed method is capable of systematically calculating weighting matrices based on the pole's moving-range and the relational equation between closed-loop pole(s) and weighting matrices. The method moves complex poles to complex poles or two distinct real poles. This will provide much-needed functionality to apply LQR controller. The example shows the feasibility of the proposed method.

A study on the development of $H_{\infty}$ 2-DOF controller for servo motors (서보모터 제어를 위한 $H_{\infty}$ 2-자유도 제어기 개발에 관한 연구)

  • Park, Sung-Chun;Park, Se-Hwa;Kim, Hee-Jun;Choi, B.W.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3073-3076
    • /
    • 1999
  • In this paper, $H_{\infty}$ two-degree-of freedom(2-DOF) model following control method is applied for the control of a brushless servo motor to achieve high robust performance. The proposed robust control algorithm designed to meet the robust stability and performances present that the robust control method is superior to conventional control methods in controlling the speed and position of a servo motor. The designed controller is implemented as an outer loop controller to a factory designed motor-servopack system. It is illustrated by simulations that the proposed method is effective to control servo systems.

  • PDF

Decentralized Input-Output Feedback Linearizing Controller for MultiMachine Power Systems : Adaptive Neural-Net Control Approach

  • Park, Jang-Hyun;Jun, Jae-Choon;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.41.3-41
    • /
    • 2001
  • In this paper, we present a decentralized adaptive neural net(NN) controller for the transient stability and voltage regulation of a multimachine power system. First, an adaptively input-output linearizing controller using NN is designed to eliminate the nonlinearities and interactions between generators. Then, a robust control term which bounds terminal voltage to a neighborhood of the operating point within the desired value is introduced using only local information. In addition, we consider input saturation which exists in the SCR amplifier and prove that the stability of the overall closed-loop system is maintained regardless of the input saturation. The design procedure is tested on a two machine infinite bus power system.

  • PDF

Implementation of Robust Adaptive Controller with Switching Action for Direct Drive Manipulators

  • Kim, Eung-Seok;Lim, Mee-Seub;Kim, Kwon-Ho;Kim, Kwang-Bae
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.1
    • /
    • pp.39-44
    • /
    • 1996
  • In this paper, adaptive controller with switching action is designed for rigid body robot manipulators to ensure the uniform stability of the manipulator system without a priori knowledge of the unmodeled dynamics. It will be shown that the parameter estimates are bounded independent of the other closed-loop signals boundedness, and also shown that the tracking error belongs to the normalized error bound via mathematical analisys. The robustness and performance of the proposed adaptive controller is investigated for the two-link direct drive manipulator actuated by VRM(Variable Reluctance Motor).

  • PDF

Design of PI, PD and PID Controllers with Time Response Specifications (시간응답 설계규격을 만족하는 PI, PD, PID제어기 설계)

  • 김근식;조태신;김영철
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.4
    • /
    • pp.259-269
    • /
    • 2003
  • This paper considers the problem of determining a set of PI, PD and PID controller gains, for a given linear time invariant plant, that meets or exceeds the closed loop step response specifications. The proposed method utilizes two recent results: for a given system, (1) finding a set of stabilizing PI, PD and PID gains and (2) the relationship between time response (overshoot and speed) and the coefficients of the characteristic polynomial. The method allows us to extract a subset of PI, PD and PID gains that meets stability as well as time domain performance requirements. The intersections of two dimensional sets described by linear and quadratic inequalities in the controller design space are need to be Identified through numerical computation. The procedure is illustrated by examples.

Self-Tuning Position Control of a Remotely Operated Vehicle (원격무인 잠수정의 자기동조 위치제어)

  • Lee, Pan-Muk
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.551-551
    • /
    • 1989
  • In general, a remotely operated vehicle(ROV) operates at deep sea. The control system of ROV is composed of two local loops; the first loop placed on the surface vessel monitors and manipulates the attitude of the ROV using joystick, and the second part on the ROV automatically controls thrusters and acquires positional data. This paper presents a position control simulation of a ROV using an adaptive controller and discusses the control effects of two different conditions. The design of an adaptive control system is obtained by the application of a self-tuning controller with the minimization of an appropriate cost function. The parameters of the control system are estimated by a recursive least square method(RLS). In the simulation, a Runge-Kutta method is used for the numerical integration and the generated outputs are obtained by adding measurement errors. Additionally, this paper discusses the mathematical modelling of a ROV and make a survey of control systems.

Self-Tuning Position Control of a Remotely Operated Vehicle (원격무인 잠수정의 자기동조 위치제어)

  • Lee, Pan-Muk
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.51-58
    • /
    • 1989
  • In general, a remotely operated vehicle(ROV) operates at deep sea. The control system of ROV is composed of two local loops; the first loop placed on the surface vessel monitors and manipulates the attitude of the ROV using joystick, and the second part on the ROV automatically controls thrusters and acquires positional data. This paper presents a position control simulation of a ROV using an adaptive controller and discusses the control effects of two different conditions. The design of an adaptive control system is obtained by the application of a self-tuning controller with the minimization of an appropriate cost function. The parameters of the control system are estimated by a recursive least square method(RLS). In the simulation, a Runge-Kutta method is used for the numerical integration and the generated outputs are obtained by adding measurement errors. Additionally, this paper discusses the mathematical modelling of a ROV and make a survey of control systems.

  • PDF

Modeling and Synchronizing Motion Control of Twin-servo System

  • Kim, Bong-Keun;Chung, Wan-Kyun;Lee, Kyo-Beum;Song, Joong-Ho;Ick Choy
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.302-305
    • /
    • 1999
  • Twin-servo mechanism is used to increase the payload capacity and speed of high precision motion control system. In this paper, we propose a robust synchronizing motion control algorithm to cancel out the skew motion of twin-servo system caused by different dynamic characteristics of two driving systems and the vibration generated by high accelerating and decelerating motions. This proposed control algorithm consists of separate feedback motion control algorithm of each driving system and skew motion compensation algorithm between two systems. Robust model reference tracking controller is proposed as a separate motion controller and its disturbance attenuation property is shown. For the synchronizing motion, skew motion compensation algorithm is designed, and the stability of whole Closed loop system is proved based on passivity theory.

  • PDF

Nonlinear Adaptive Control for A Linear-Motor-Driven Two Axes through A Enhanced Cross-Coupling Algorithm (개선된 교차축 연동제어기를 통한 리니어 모터의 비선형 적응제어)

  • Han, Sang-Oh;Hwang, Woo-Hyun;Lee, Sang-Min;Huh, Kun-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.902-906
    • /
    • 2008
  • The linear motors are easily affected by load disturbance, force ripple, friction, and parameter variations because there is no mechanical transmission to reduce the effects of model uncertainties and external disturbance. For highspeed/high-accuracy position control of a linear-motor-driven two axes, a nonlinear adaptive controller including a cross-coupling algorithm is designed in this paper. The nonlinear effects such as friction and force ripple are estimated and compensated. An enhanced approach for cross-coupling algorithm is proposed to effectively improve the biaxial contour accuracy with the closed-loop stability. The proposed controller is evaluated through the computer simulations.

  • PDF

Development of a Robust Nonlinear Prediction-Type Controller

  • Park, Ghee-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.445-450
    • /
    • 1998
  • In this paper, a robust nonlinear prediction-type controller (RNPC) is developed for the continuous time nonlinear system whose control objective is composed of system output and its desired value. The basic control law of RNPC is derived such that the future response of the system is first predicted by appropriate functional expansions and the control law minimizing the difference between the predicted and desired responses is then calculated. RNPC which involves two controls, i.e., the auxiliary and robust controls into the basic control, shows the stable closed loop dynamics of nonlinear system of any relative degree and provides the robustness to the nonlinear system with parameter/modeling uncertainty. Simulation tests for the position control of a two-link rigid body manipulator confirm the performance improvement and the robustness of RNPC.

  • PDF