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Abstract

In this paper, a robust nonlinear prediction-type -controller
(RNPC) is developed for the continuous time nonlinear
system whose control objective is composed of system
output and its desired value. The basic control law of RNPC
is derived such that the future response of the system is first
predicted by appropriate functional expansions and the
control law minimizing the difference between the predicted
and desired responses is then calculated. RNPC which
involves two controls, i.e., the auxiliary and robust controls
into the basic control, shows the stable closed loop dynamics
of nonlinear system of any relative degree and provides the
robustness to the nonlinear system with parameter/modeling
uncertainty. Simulation tests for the position control of a
two-link rigid body manipulator confirm the performance
improvement and the robustness of RNPC.

1. Introduction

Model predictive controllers have received great attention
and the theories and applications have been developed
extensively during past two decades[1][2][3]. Almost all of
model predictive control researches have, however, been
focused on the discrete time linear system models which are
represented by explicit form of input and output relationship.
For nonlinear systems, the prediction concepts used in the
adaptive control rather than the predictive control have also
been configured on the mathematical models of explicit form
of input and output relationships[4]}[5], in which the
functional expansions of Volterra and Wiener series provide
the basic framework for nonlinear explicit model.

As a different approach, Lu[6] suggested one method in
which the prediction concept can be configured directly on
the dynamic nonlinear system models, which have no
necessity to be transformed into the explicit mathematical
models. The basic control law of nonlinear prediction-type
controiler (NPC) based on the implicit form of nonlinear
system models is derived in such a way that the future
response of the system is predicted by appropriate functional
expansions suggested by Lu[6] and then, the control law is
produced for minimizing the control objective which is a
energy function composed of the predicted and desired
responses. It has a very simple form and can be obtained
optimally even under the control input constraint. In NPC,
the prediction time interval has not only a role of
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determining the prediction interval but also of adjusting
closed loop dynamics. It does not disturb the system stability
whether its value is given by a large or small value but is
concerned with the convergence of tracking error. In this
paper, we call this controller as nonlinear prediction-type
controller rather than nonlinear predictive controller because
its internal mechanism is slightly different from existing
model predictive controllers.

The control objective in NPC may be composed of system
outputs or system states. In many applications, especially
control of robot manipulator and underwater vehicles, the
control objective with system outputs is sufficient for
asymptotic tracking of all outputs and states. When the
control objective is constructed with system output and its
desired value, the closed loop stability of nonlinear system
with the basic control law is guaranteed for systems whose
relative degree is less than 5. For systems with relative
degree higher than 4, other penalties such as time derivatives
of output error may be incorporated into the control objective
in order to obtain the closed loop stability[6]. This results in
more complex form of control law and increases weighting
factors (or matrices for MIMO system) which, in turn, adds
the difficulty in finding the optimal values of weighting
factors.

In order to remedy the problems described above, a robust
nonlinear prediction-type controller is developed. In RNPC,
an auxiliary control and a robust control are involved into the
nonlinear prediction-type controller. By means of the
auxiliary control, the closed loop dynamics is always stable
for the relative degree higher than 4. Incorporation of the
robust control gives the asymptotic stability of the system
with parameter/modeling uncertainty without requiring any
critical restrictions.

2. Development of Basic Control Law

In this section, the basic control law of NPC is derived.
The closed loop dynamics of the nonlinear system with the
basic contro} law is investigated and the problem occurred

from using this control law is also investigated.
Consider the nonlinear system with system order n such as
x = f(x) + G(x)u, (1a)
y = ¢(x), (1b)
where x e X c R"is the state, u € U c RPthe control input,



yeR? the output. The functions f:R" »R",

G:R" >R™, and eR" > RP are supposed to be
sufficiently smooth and have finite magnitudes, respectively.
The domain X contains the origin and U is a compact set. It
is assumed that p<n.

Let r; be the relative degree of ith component of output.
Then, the dynamic equation of ith component of system
output, y;, to input is represented as

L'(c)+ZL (L (e,
P
where ¢; and u; are ith components of output function and

(r)

09

input vector, respectively. Li(c,) is the rith order Lie
derivative of c¢; with respective to f, and the term
L, (L’;“ (c;)) in Eq.(2) is represented as

Lr}—l :
Loy = L),

where g; is the nx1 column vector of G.

When the above procedure is carried out repeatedly from
i=1 to i=p and the resulting forms are collected to represent
the compact form, the dynamic equation of system output to
input is

y' =p(x) + W(x)u, 3)

T T
'] 0 =[Lice) - Lice,)] and
W(x) is a pxp nonsingular matrix, in which ith raw vector
wi(x) is defined as

w,(x) = [Lgl (L’}—l (c;)) Lgp (Lr:_—l (c. ))] , for i=1,--p.

As suggested by Lu[6], the future output at t+h (h>0) from
current time t is expanded such as

where y' = [ygﬂ)

y(t+h) = 2(t) + A(W)[p(x) + Wxu(t)],  (da)
where h is called the prediction time interval,
y(t+h) =[y,(t+h)---y (t+h)]", «t) =[z,(t) -z, (O]

and A(h) is the pxp diagonal constant matrix whose diagonal

elements are represented as i (i=1,--,p).
r,!
In Eq.(4a), ith component of z(t) is represented as

z;(t) = A, (h); (1),
where A, (h) = [1 L

21
6 =[v.® 3,0 -y
The desired future output of the system is also
approximated as

= 1)-] Ixr; vector,

f’-")(t)]T: rix1 vector.

Y. (t+h) =z, (t)+ A(h)y, (1), (4b)
where Yo(t+h)=[y4,(t+h)-.- Yap (t+ h)]T >
z,() =24, (1) 2, (D], and yi () = [YS'.',’ (1) yﬂ'p’(t)]T-

In Eq.(4b), ith component of zy(t) is represented as
z4;(t) = A, (h)d,, (V)
(-1

. T
where 6, (1) = [Yd,i (1) ¥(O--yg: (t)] .
The future output error, e(t+h), is defined as
e(t+h)=y(t+h)-y,(t+h)
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=z, () + A(b)p(x) + A()W(x) - A(h)y; (1), (5)
ith  component of 2z is represented as
Ze,i (t) = A'i (h)¢e,i (t) and ¢c.i (t) = [ei (t) éi(t) s e?"") (t)]T -

The control objective for output error to be minimized has
the form of

where

J(t+h)= %e(t +h)TQ e(t+h), 6

where Q. is the pxp positive definite weight matrix which is
usually diagonal matrix.

The control input is produced from the fact that the
control input obtained at time t should minimize the control
objective at time t+h, namely, dJ(t+h)/du(t)=0. The control
input derived in this way, by use of Eqs.(4) and Eq.(5), is as
follows

u(t) = —[(A()W(x))"Q,, (A()W(x))] ™ -
(AMW(x)'Q, [z, (1) + A(h)p(x) — A(h)y;(1)]. (7)
As can be seen in Eq.(7) with a few more manipulation by
use of the fact that W(x) is nonsingular, the prediction time
interval which resides in A(h)™' has a role of controller gain.
Ifh is tuned to a small value, the control input is produced by
a large value for a small output error and if h is set to a large
value, the case is reversed.
The closed loop dynamics by inserting the control input of
Eq.(7) into Eq.(3) is expressed as follows
Y'(®)=-A) 'z, () +y5(1) -
If a px1 vector e'(t) is defined as
ei” (1)
e(t)=
ey ()
then, Eq.(8) can be expressed as
e ()+Ah) 'z, (1) =0. ®
The ith component of error dynamics in Eq.(9) is
represented as

e (t) + -

®

=y () -ys(t)

0 e V(1) + & (1)

2' hr -2
—€, (t)+—e (t)=0.

L (10)
hl'

As can be seen in Eq.(10), the predlctlon time interval has,
in this case, a role of determining the convergence rate of
error dynamics. From Eq. (10), the error dynamics has
pole(s) in open negative half complex plane for r<4 and it is
unstable for the relative degree r; greater than 5. Hence, the
control input in Eq.(7) obtained from Eq.(6) is confined to
the nonlinear system which has the relative degree of each
component of output less than five.

3. Development of Control Law of RNPC

In order to remedy the problem described in the previous
section, Lu[6] suggested that if the system has the ith relative
degree r; greater than 4, the control objective is modified in
such a way that it includes other penalties from the derivative
of ith future output error to (r;-/)th order derivative until
closed loop dynamics is stable. This procedure requires more
and more weight matrices, and this makes the control input



be complex and also increases the difficulty in tuning the
weight matrices.

In this section, a simple and very efficient method is
suggested in order for the closed loop dynamics with the
control input of the form of Eq.(7) to be stable regardless of
the order of the relative degree of any component of output.
Moreover, in order for the closed loop dynamics to have the
asymptotic convergence under the parameter/modeling
uncertainty, the robust control is developed.

3-1. Auxiliary Control

As we investigate carefully the behavior of error dynamics
in Eq.(9), the error dynamics is time invariant and not
affected by the nonlinear functions of the system. Therefore,
the error dynamics can be changed via slight modification of
the structure of control input of Eq.(7) in such a way that
canceling out the existing linear term and inserting additional
linear term into the control input makes error dynamics
always stable for any order of relative degree of each
component of system output.

Let the auxiliary control v(t) be defined as

v(t) = -z, (1) + A(h)v(t), an
where ith component of V(t) 1is represented as
— 1 r. r.
v,t)=A,,(h), () and 3 (p)=|— —_ ... Ll

s )¢, v,:( ) h% hri—l h

Then, we make the following theorem.
Theorem 1: For the systems of Egs.(1} which have total
relative degree, r, the following control input, uc(t),

u (1) = [(AMW(X)'Q, (AW (A(W(X))'Q,

[z.(1) + A(Wp(x) - Ay, (D) + v(1)]. (12)

achieves input/output linearization and asymptotic tracking
of any given future output y«t+h) for any h>0, Q.>0, and
W(x) being nonsingular is guaranteed, for any r; (i=1,-p).
Proof: When Eq.(12) is inserted into the control input u(t) in
Eq.(3), the closed loop system is represented as

¥ (®) = p(0) ~ A() [z, + A()p(x) — Ah)y; + V()]

=yi (- V(D).
Then, the above equation results in
e'()+v(t)=0.
The ith component of the above error dynamics is

r(r, -1 & (1)

') TR
ei.(t)+__ei. (t)++ —
h hrl 2

T. 1 .
e (1) +——e(t) = 0, (for i=1,-~p).
hr,—l l( ) hri I( )

From the above result, the closed loop dynamics is linear and
time invariant and hence, input/output linearization can be
achieved.

Moreover, the above equation can be represented
equivalently as

(s+3r’ei(t)=0’

where s is the complex variable or differentiation operator.

4

Since the above equation has r;th order of poles at — i, this
dynamics is always stable regardless of by what value the
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relative degree r; may be given g

3-2. Robust Control for Parameter/Modeling Uncertainty

For the case that the nonlinear system has the
parameter/modeling uncertainty, the dynamic equation of
Eq.(3) is rearranged by dividing the known functions and the
unknown functions such as

¥ (0 = B0 + Ap(x) +[W(0) + AW Ju(t)
= p(x) + W(xu(t) +d(t) - (13)
where P and W are the exactly known functions, Ap and
AW are the unknown functions due to the parameter/
modeling uncertainty, and d is the collection of the unknown
functions.

In this paper, the robust control is derived based on the
assumption that the bound of d(t) can be acquired by the
following form

[d, ()] €d,,.; <, Vt20, fori=1,~p. 14)

Let (1) be the control input based on the known

max,i

functions p and W, and this control is represented as

i,(1) = -[(AMWE)'Q, (AW (AWE)TQ,
[z (t) + A(h)p(x) — A(h)yy (1) + v(t)] (15)

The closed loop dynamics obtained by inserting Eq.(15)

into Eq.(13) is

e (t)+v(t)=d(t). (16)
As can be seen in Eq.(16), the asymptotic convergence of
tracking error to zero can not be achieved when the nonlinear
system has the parameter/modeling uncertainty. In other for

asymptotic tracking to be achieved, the control input of
Eq.(15) is modified as
i.(1) = (AW () Q,(AMWE)] (A W) 'Q,
[z, (1) + A()P(x) — A(h)yy (D) + v(t) + A()r(t)] (17)
where r(t) in the most right hand side of Eq.(17) is the robust
control.
Then, the closed loop dynamics is represented as
e’ (t) = —v(t) +d(t) - r(t). (18)
In order to derive the robust control based on the
Lyapunov redesign method, the error dynamics of Eq.(18) is
to be rearranged into a type of canonical vector form. To see
the transformation procedure of Eq.(18) into a canonical
vector form, let us consider, for example, the nonlinear
system of n=2 and r=2 (i=1,2). The error dynamics of
Eq.(18), in this case, becomes

€ (t) _%él(t)—h%el(t)
€, (1) _%éz(t)"h%ez(t)

Define the augmented error vector, e,, as

]+ dt)-r(t)- (19)

€, =[e1 e, € é2]T‘
Then, the error dynamics of Eq.(19) can be transformed
into the canonical form such as
e, (1) =Te (1) +B(d(t) - r(1)), (20)
where I' and B are 4x4 and 4x2 matrices defined as,
respectively



0 0 1 0 0 o0
0 0 0 1 00
= ] ) , and B=
-7 0 -3 0 1 0
0o -+ 0 -} 0 1

Expanding the procedure described above to higher order
system , the error dynamics of general system as represented
in Eq.(18) is represented as a canonical form of Eq.(20) with
the rx1 augmented error vector e, the rxr matrix I, and the
rxp matrix B, in which r means total relative degree.

At this point, define the Lyapunov function candidate V as

@n

where the pxp symmetric positive definite matrix P satisfies
the Lyapunov equation

I''P+ PI" = —Q, for Q>0.
The time derivative of V is represented, by use of Eq.(20)
and Lyapunov equation, such as

V= _%eerv +eTPB(d(t) — r(1)) -

V= —l-ezPev
2

(22)

In Eq.(22), the term €. PB is a 1xp vector and defined as
a p-raw vector m such as
m=[m,---m]=e;PB. (23)

Then, Eq.(22) is again represented as

V= —%ejoev +i[midi(t) - m;r,(1)]

< —%eIQev + 2 [Imifd, ()] - mir, (0]

If we set

r, (t) = sgn(m, )dmx‘i , fori=1,-p 249

where the function sgn is a sign function defined as
1 if(s>0)
sgn(s) = {— 1 if(s<0)
then the time derivative of V becomes

Vs _%ezoev : (25)
From the above result, we make the following theorem.

Theorem 2: Suppose the nonlinear system with
parameter/modeling uncertainty is represented by Eq.(13)
and the bound of uncertainty can be acquired by Eq.(14).
Then, the control law of Eq.(17) in which the robust control
r(t) is given by Eq.(24) guarantees the asymptotic output
tracking, i.e., y(t)—>yq(t) as t—>o0.

Proof: The control law of Eq.(17) and the robust control of
Eq.(24) make the time derivative of the Lyapunov function
defined as Eq.(21) become Eq.(25). Since Q is positive

definite, V has a negative or zero value. Therefore, the
Lyapunov function V in Eq.(21) is the non-increasing
function. If the initial value of Lyapunov function, V(0), is
finite, then V(t) is finite for Yt>0. From Eq.(21), e, is also
finite for V>0 (e, eL_). By examining Eq.(20), ¢ _ is
finite (¢, e L) for Vt=0 because e, and other terms such as
I', B, and (d(t)-r(t)) are finite for Vt=0. By integrating both
sides of Eq.(25) from t=0 to t=cw0, the following inequality is
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obtained such as

[ e. (17 Qe, (v)dr <2[V(0) - V()] < 0.
From the above result, the augmented error e, is square
integrable and hence, e, eL,. The factthat e €L, NL_

and & eLl_ concludes, by Barbalat’s lemma[7], that
e.(t)—>0 as t—>o. [im e (t) = 0 means equally lime(t) =0,
t—ow t

and this also means that y(t)—>yd«(t) as t—oo. Therefore,
asymptotic tracking can be guaranteed g

By theorem 2, the control law of RNPC can drive the
system output to track the desired output asymptotically
despite of parameter/modeling uncertainty by just knowing
the bound of uncertainty as represented in Eq.(14). In the
implementation of this control, however, the robust control
induces a certain problem due to its discontinuous sgn
function. This problem is usually called the control
chattering[8]. In order to circumvent the control chattering,
the robust control is modified as

H tim
ri(t)={ Sgn(ml;i)dma Tf(]mi|> m;r ), (i=1,~p) (26)
(m, /mim)dmm if(m;|< m™)

From Eq.(26), the robust control r(t) (ri(t), i=1,-,p) is
continuously approximated when the vector m dependent on
the tracking error resides within the boundary layer
determined by m!™, i=1,~-,p. The asymptotic convergence
of tracking error is guaranteed for only the region outside the
boundary layer and hence, the tracking error is driven into
bounded value rather than to zero.

4. Simulations

In order to investigate the tracking performance of RNPC,
simulations are performed for the position control of two-
link robot manipulator. In the study of Park, et al.[9], RNPC
was applied to a SISO system which described the
translational motion of an underwater wall-ranging robot
(UWR) and the simulation results showed the good control
performance of RNPC and also robustness to the uncertainty
in the dynamics of UWR motion.

The two-link rigid-body manipulator, which Gao and
Hung[8] used for their simulation study, is represented by

M(6)0 +n(8,0) =t +£(6,0,p,t), @7
where 0, n, 7, and f are all two column vectors. In Eq.(27), 6
is the joint angle vector, p the uncertain parameter vector, M
the positive definite inertia matrix, n the sum of the
centrifugal, Coriolis, and gravitational forces, t the control
input torque, f the collection of all uncertainties or
disturbances. All dimensions such as mass and length of each
link are the same as that in the study of Gao and Hung[8]
except one assumption that all mass exist as a point mass at
the distal end of each link.

The output of the above system is the joint angle vector.
Through the same procedure as in Egs.(4), the future and
desired future outputs at time t+h for the system of Eq.(27)
having no uncertainty are expressed as

8(t+h) = z(t) + A(WM [t - n],
0,(t+h)=z,(t) + A(h), (1),

(28a)
(28b)



where z,(t) = 0,(t) + ho, (1),
2, (1) =0,,()+ héd,i (t) fori=1,2,

8, = [éd,l é“], and the 2x2 diagonal matrix A(h) has all
diagonal elements of h?/2. The future output tracking error is,
then, expressed as

e(t+h)y=2z (t)+ AM [t —n]— A6, (1) (29)
Differentiating the control objective of Eq.(6) by the
control input makes the control input t(t) become
(1) =-A"Mz () +n+ MO, () + v(t).  (30)
In Eq.(30), the auxiliary control v(t) is involved and this
is represented as
v(t) = A(h) "' Mz_(t) — MZ, (1)
where Z,; = T,li'ei + ¢, (fori=1,2).
In order to cope with the uncertainty f, the control input
is composed of two controls

() =1 () + (1), (€20

where 1. is the control input as in Eq.(30) and f is the
robust control. For the robust control, the following
uncertainty bound is supposed to be known
If;|< £™,Vt 2 0 (for i=1,2)
The closed loop dynamics of the system of Eq.(27) with
the control of Eq.(31) is

&) = -Z, () + M (f =) =—Z,() + (£, — T\,
where f, =M™f and fM =M'f. f,
transformed robust control.

Since we know the bound of f, the bound of fy can be
obtained, and this is represented as

[£y,|< £25, 9 2 0 (For i=1,2). (33
With Eq.(32) and Eq.(33), the robust control is derived

through procedures from Eq.(19) to Eq.(24) and the
transformed robust control is expressed as

(32)

lim

;- ={ sgn(m e if(m > m™) g
T Ly s mimyER if(m, )< mim)
Then, finally, the robust control is
f = Mf,-

For the simulation, the initial position of the joint angle

vector is 6,(0)=0,(0)=10° and the desired positions are set by
Gd,l =45° and ed,z =0°, Vt=0.

Fig.1 shows the output tracking results of NPC and NPC
with the auxiliary control where h is set to 0.15s for all
simulations when the system has no uncertainty. Both
controls show satisfactory results. The results of NPC have
more fast response time but small overshoots in outputs are
observed. The results of RNPC without the robust control for
the system with uncertainty are shown in Fig.2. The
uncertainty (or disturbance) is given by f;=50sin(41,t) and
f,=50sin(47.t), which is the exactly same form as given by
Gao and Hung. As can be seen in Fig.2, the tracking
performance of RNPC without the robust control is very poor
and unacceptable. Fig.(3a) shows the output tracking
performance of RNPC, in this controller, all m;"™ (i=1,2) are
given by 0.001, when the system has the uncertainty.

is called the
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Fig.(3b) shows its control behavior. From Fig.(3a), the
control performance is improved remarkably, which
concludes that RNPC can cope with the uncertainty very well,

For comparison, one method for synthesizing the sliding
mode controller (SMC), suggested by Gao and Hung|[8], is
applied and the tuning parameters of SMC are given by the
same values as in Gao and Hung. Figs.(4) show the results of
SMC. From Fig.(3a) and Fig(4a), the control performances
of both controllers are similar and, from the comparison of
the tracking error trends which is not presented in this paper,
RNPC shows the slightly better performance. Moreover,
comparing Fig.(3b) with Fig.(4b), the oscillations of control
torque of SMC are severe, but RNPC shows very smooth
behavior of control torque. Based solely on this simulation
results, RNPC has more advantages than SMC suggested by
Gao and Hung for position control of robot manipulator with
uncertainty.

5. Conclusions

In this paper, a robust nonlinear prediction-type
controller is suggested. The basic control law of RNPC is
developed based on the pure dynamic model of the nonlinear
system whereas existing model predictive controllers are
derived for explicit models of linear system. The basic
control with the auxiliary control provides stable closed loop
dynamics of nonlinear systems irrespective of the order of
relative degree. The robust control also involved into the
basic control drives the outputs of the nonlinear system with
parameter/modeling uncertainty to converge to the boundary
region around the desired outputs without requiring any
restricted conditions against the controller structure and
system model. '

In the simulation tests, RNPC is applied to the MIMO
nonlinear system, i.e., the position control of robot
manipulator with uncertain disturbance. The tracking
performance of RNPC is very satisfactory and slightly better
than that of sliding mode controller suggested by Gao and
Hung. It is, therefore, concluded that this controller can be a
good candidate among nonlinear controllers that satisfy the
control purposes for uncertain nonlinear systems.
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