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Abstract

Twin-servo mechanism 18 used to increase the payload ca-
pacity and speed of high precision motion control system.
In this paper, we propose a robust synchronizing motion
control algorithm to cancel out the skew motion of twin-
servo system caused by different dynamic characteristics
of two driving systems and the vibration generated by high
accelerating and decelerating motions. This proposed con-
trol algorithm consists of separate feedback motion control
algorithm of each driving system and skew motion com-
pensation algorithm between two systems. Robust model
reference tracking controller is proposed as a separate mo-
tion controller and its disturbance attenuation property is
shown. For the synchronizing motion, skew motion com-
pensation algorithm is designed, and the stability of whole
closed loop system 1s proved based on passivity theory.

1 Introduction

High precision control systems emphasizing the demand for
high performance and high productivity have introduced
twin-servo mechanism in many current applications such
as semi-conduct devices. Twin-servo mechanism is used to
increase the payload capacity and speed of high precision
system [1]. This consists of two driving motors controlled
independently for one reference input. The difficulties are
frequently due to the fact that systems of interests require
wide range and high speed motions in which nonlinear ef-
fects are significant. Consequently, control algorithm for
the high performance systems must address both the syn-
chronizing motion control performance under the dynamic
unbalance of twin-servo system and the robustness issue
under the nonlinearities and uncertainties.

In this paper, we show a modeling of twin-servo system
and propose a robust synchronizing motion control algo-
rithm to cancel out the skew motion caused by different dy-
namic characteristics of twin-servo system. This proposed
synchronizing motion control algorithm consists of a sepa-
rate feedback controller of each system and a skew motion
compensation algorithm between two driving system. We
design a model reference position tracking controllers for
a separate mechanical system with nonlinear disturbances
and the nonlinear dynamic friction. For the synchronizing
motion of twin-servo system, skew motion compensation
algorithm is designed. The stability of whole closed loop
system is analyzed based on passivity based approach.

In the next section, modeling of twin-servo system us-
ing network representation is presented. In section 3, we
propose a robust motion control algorithm based on the
internal-loop compensation. In section 4, a skew motion
compensation algorithm of twin-servo system is proposed
and the stability analysis of whole closed loop system is
represented, and conclusion follows.

2 Twin-Servo Motion Control System

Twin-servo system consists of two motor systems in which
the dynamic behaviors of two system are functions of each
other. In this section, we deal with modeling and network
representation of twin-servo system including general syn-
chronizing motion control algorithm.

Modeling of Twin-Servo System

Most twin-servo systems consist of axes with multiple
degree-of-freedoms(DOF). However, a simple one DOF sys-
tem is considered in order to make the problem simple. It
is easy to apply the one DOF algorithm to a multiple DOF
system. A twin-servo system consists of the primary and
secondary servo system with control loop closed separately
around primary and secondary as shown in Fig. 1. The dy-
namics of two systems are given by the following equations:

MpEp +bpip =15 + fp 1)
MsZs + by =75 + fa (2)

where z, and z, denote the displacement of the primary
and secondary motor, respectively. And m, and b, rep-
resent mass and viscous coefficient of the primary motor,
respectively, whereas m, and b, are those of secondary mo-
tor. f, denotes the force that separate feedback controller
applies to the primary motor, and f. denotes the force that
separate feedback controller applies to the secondary mo-
tor. Driving forces for synchronizing motion of primary and
secondary motor are represented by 7 and T7,, respectively.

It is assumed that the dynamics of the separate feedback
controllers can be approximately represented as a simple
spring-damper system:

Jor = fo = bpcp + KpeZp (3)
f"' - fs = baci'a + kacxa (4)
where by, and kp. are viscous coefficient and stiffness of the
separate primary feedback controllers, respectively. bsc and
ksc are those of the separate secondary feedback controller,

and fpr and f,r denote primary and secondary reference
command determined by the desired trajectory.
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Fig. 1: Twin-servo motion control system
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Skew Motion Compensating Control

Different dynamic characteristics of two motors cause the
skew motion of twin-servo system. Moreover, high acceler-
ating and decelerating motions may generate the undesir-
able mechanical vibration. Under such conditions, the syn-
chronization performance may seriously get worse if these
are not properly attenuated.

Synchronizing motion controller is used to synchronize
the motion of two motors by cancelling out the skew mo-
tion. Hence, this has to recognize skew motion in real time
and compensate dynamic difference during high-speed mo-
tion. The separate robust feedback controller compensates
different dynamic characteristics of two motors and the
skew motion compensating controller is appended to this.

Consider the following control schemes for primary and
secondary motor as a general expression which determines
compensating forces to synchronize motions:

dt?

d | o d
- (K”’ + Kpo g7+ Koo dtz)

d v d
= (Ksp'l‘K,pdt Kapm) z

' n d?
_<K33+K33d+K d )

d n g2
Tp = (me + Kpp @ + Kpp ) Zp
(5)

(6)
d * dt?

where Ky, K, and K, . are feedback gains of the pri-
mary motor posmon velocxty, and acceleration, whereas
Kps, K,,,, and Kp, are gains of the secondary motor, re-
spectively.

In (5) and (6), we assume an ideal situation where time
delay due to the data transmission between two systems is
negligible. We also assume that the scales of position are
identical for the primary and secondary sites.

Network Representation

Two-terminal-pair network [2, 3] shown in Fig.2 is used
in the analysis of twin-servo control system. Impedance
matrix Z is defined from the relations between current and
voltage of a two-terminal-pair network.

Vi=2zuli + zi2l2 (7)

Vo = zo1 11 + 22212 (8)
211 212

= 9

z [z21 zzz] ©

where I; and I; denote current, and Vi and V; denote
voltage at each terminal pair.

Let us consider a two-terminal-pair-network connected
to a power source at each terminal pair as shown in Fig. 3.
By regarding the power source as a reference command
and two-terminal-pair network as a twin-servo system, the
whole system can be replaced by the electrical circuit in
Fig. 3. The correspondence between the modeling in the
previous subsection and the circuit representation in Fig. 3
is given as

Tp, s +— current I I,
fors fsr +— current Vi, Vi
fo, fs +— voltage V,,V,
Tpy Ts +—— voltage T,,Ts.

I, I,
v o tv.
O—..-' ’._‘_o
o )

I, I

B

Fig. 3: Circuit representation of twin-servo system

(1), (2), (5), and (6) can be transformed from time domain
into 8 domain as follows:

Ty + Vp = (mps + bp), £ Z,1, (10)
T, + Vi = (m.s + b,)I, 2 Z,1, (11)
T, = (K,',',,s + K, + K,,,%) I,
- (K;,',s +K,, + K,,.,%) I, (12)
£ P,I, — Ryl,
T, = (K;;,s + K, + K,p%) I,

”" ’ 1
- (Kus + K,y + Kas ;) I, (13)
2 P,I, - R,I,.

By eliminating T}, and T, from (10), (11), (12}, and (13),
the impedance matrix of the twin-servo system is obtained

as follows:
Z, — B, R,
Z= [ ' Z,+R,]' (14)

Noting that I, I3, Vi, and V; in Fig.2 correspond to I,
I, Vp, and V, in Fig. 3, respectively. The determinant, |Z],
is given by

|Z| = (2, — P)(Z, +Ra)+PaRpéD- (15)
Dynamics of the separate primary and secondary feedback
controller can also be represented in a form of impedance.

1

Zpe =bpc + kpc; (16)
1

Zse = bse + kac; (17)

Equations (16) and (17) are obtained from the simple mod-
eling of the separate primary and secondary feedback con-
troller in (3) and (4). Of course, one can design more appro-
priate impedance models for Z,. and Z,. if it is necessary.
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3 Separate Model Reference Control

In this section, a robust model reference trajectory track-
ing controller based on internal-loop compensation scheme
with 2-DOF control structure is presented [4]. Disturbance
attenuation property of the proposed controller is shown in
frequency domain using disturbance observer filter Q.

The dynamics of primary or secondary system actuated
by a separate feedback controller is described as follows:

mi + bi = f (18)

where f is a separate feedback controller to follow the de-
sired trajectory. Here, note that the driving force for syn-
chronizing motion control is not concerned because only
the separate feedback controller is dealt with in this sec-
tion. Tracking error is defined as

e=z4—x (19)

where z4 is a desired trajectory. We assume that z4, its
first, and second derivatives are all bounded as function of
time.

The proposed model reference feedback controller is for-
mulated as follows:

f=fm+K(@zm—2) (20)
where K is the controller of internal-loop compensator, and
fm is reference control input written as

This control input is used to generate internal model state.
Since m,» and by, are designed value, z,» becomes the state
of implicit internal model (21).

Suppose that we now want to design a model following
controller for the system given in (18). To begin, we select
the reference trajectory

: ¢
xm=xd+/\/ e dt. (22)
0

The difference between the state of system (18) and the
state of internal model (21) is represented as follows:

¢
zm—x=e+A/edt. (23)
0

Differentiating both side of (23) with respect to time yields
Fm—f=é+deZT, (24)

leading to the following dynamic controller based on inter-
nal model compensation as shown in Fig. 4.

f=mnpin +bnin + K,r (25)

Remark 1 From (20) and (25), reference model and con-
troller of internal-loop compensator are represented as fol-
lows:

1
T Mms? + by’
Using (26) and (27), we get the disturbance observer filter
Q which is represented as follows [4]:
P.K K, [mm
14+ PnK ~ 8+ (bm+ K.)/mm’

Pm K =K,s. (26)

Qs (27)

Since b is much less than K, in general, 5= becomes the
cutoff frequency of first order low pass filter.

\\ Robust internal-loop | S b

| —

Fig. 4: Robust model reference control structure

Remark 2 To compensate nonlinear disturbances, we can
append additional control algorithm to (25) such that

f=MnéEm +bnEm + Ker + F(z,2m) (28)

where F(z,z.,) s either robust or adaptive algorithm to
attenuate nonlinear disturbances.

4 Stability Analysis

In this section, we discuss the stability of proposed synchro-
nizing controller including separate primary and secondary
feedback controller. Synchronizing motion controller makes
the system reciprocal so that the necessary and sufficient
condition can be calculated analytically.

Passivity Based Approach

The motion of primary motor results from two control in-
puts: f,, the separate control command of the primary and
Tp, the skew motion compensating command of twin-servo
mechanism. Control inputs of secondary motor are similar
to those of the primary. Primary and secondary motor are
interconnected in a feedback loop, and the dynamics of the
whole closed loop system must also be considered.

From electric circuit representation of section 2, the
twin-servo system can be represented as follows:

b=Sa (29)

where the matrix S is called scattering matrix, @ and b are
input and output wave defined as follows:

]TéV+I V-1

- raV-1
— b=k S —— (30)

where V = [V,,V,]T and I = [I,,I,]T. The system is
passive when the power consumed in the system satisfies
the following equation:

P=Re(V;I, - VL)
=a'a-—b"b (31)
=a"(BE;-858"S)a>0

a = [a1,a2

where superscript * denotes conjugate transpose, and E2
is 2 x 2 identity matrix. From the above inequality, the
system is passive if the following inequality is satisfied.

ISl = 3(S(iw))

= sup A2 (S(jw) S(w) <1 OB

The scattering form of the twin-servo system is shown
in Fig. 5(a). This can be described as Fig. 5(b). Here, the
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Fig. 5: Scattering form of the twin-servo system

separate primary and secondary feedback controller can be
regarded as a virtual environment which is interacting with
the twin-servo system. This is given as follows:

A= {SSC 50] : (33)

Since |Spe| < 1 and |Ssc| < 1 from (3) and (4), |A|l,
is achieved. The necessary and sufficient condition of the
stability of twin-servo system is given as follows [5, 6]:

Theorem 1 Necessary and sufficient condition of the
twin-servo system is that the scattering matriz of the twin-
servo system S 1is analytic in Res > 0 and the structured
singular value of S against the block structure A should be
less than or equal to one, that is

pa(§) <1, Vw (34)

where A is the following block structure corresponding to
A and C means complex number

A = {diag[A, Ag]: A € C} . (35)

If the system is reciprocal, that is, S is symmetric, fol-
lowing equation can be satisfied.

1a(S) =11l (36)
The scattering matrix S of the system is given by
S = 1
D+4+zi1+22+1 (37)
9 [D+z11—222—1 2212 ]
2zn D—-zi+z2z2-1

Hence we can analyze the stability of the system by (32).

Stability Analysis
Synchronizing motion control scheme is a symmetric type
proportional- and-derivative(PD) control by which one mo-
tor follows the position of the other. The control algorithm
is given as follows:
o = kp(zs — Tp) + ka(&s — &) (38)
Ts = kp(Tp — z5) + ka(Zp — £5) (39)
where kp, and kg are PD gain, respectively. The scattering
matrix is symmetric when the system is reciprocal, so that

it is easier to analyze stability. Substituting the parameter
of (38) and (39) into (37), we get

1
(1+ms +8) (1+ms+b+2(ka + 22))

<[5 4]

S =

(40)

where
k 2 [k 2
a= (ms+b+ Tp"'kd) - (T” +kd) -1 (4)
kp
B=-2 —s—+kd . (42)
The singular values of S are given as follows:
_|ms+b-1]
— <1 4
= mer by S (43)

'm.s+b+2ka;+3’f2 1|

s

<1 (44)
I’m-8+b+2kd+ Zkp +1|

Both of them never violate the inequality (32). There-
fore, the stability of twin-servo system when the proposed
control algorithm is applied has been guaranteed under
the condition such that both of the separate primary and
secondary feedback controller’s dynamics are passive, and
reference commands, f,r and fs, are independent of the
state variables. But note that there is no time delay in
the two communication channel between primary and sec-
ondary motor system.

5 Conclusions

‘We proposed modeling and network representation of twin-
servo system including general synchronizing motion con-
trol algorithm which consists of separate feedback con-
trollers and skew motion compensator. Model reference
tracking controller based on internal-loop compensator is
proposed as the separate feedback controller and symmet-
ric type PD controller which make the system reciprocal
is designed as the skew motion compensator. The stabil-
ity analysis of proposed synchronizing motion control algo-
rithm is shown based on passivity based approach.
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