• 제목/요약/키워드: Two-level inverter

검색결과 153건 처리시간 0.021초

Design and Implementation of a New Multilevel DC-Link Three-phase Inverter

  • Masaoud, Ammar;Ping, Hew Wooi;Mekhilef, Saad;Taallah, Ayoub;Belkamel, Hamza
    • Journal of Power Electronics
    • /
    • 제14권2호
    • /
    • pp.292-301
    • /
    • 2014
  • This paper presents a new configuration for a three-phase multilevel voltage source inverter. The main bridge is built from a classical three-phase two-level inverter and three bidirectional switches. A variable DC-link employing two unequal DC voltage supplies and four switches is connected to the main circuit in such a way that the proposed inverter produces four levels in the output voltage waveform. In order to obtain the desired switching gate signals, the fundamental frequency staircase modulation technique is successfully implemented. Furthermore, the proposed structure is extended and compared with other types of multilevel inverter topologies. The comparison shows that the proposed inverter requires a smaller number of power components. For a given number of voltage steps N, the proposed inverter requires N/2 DC voltage supplies and N+12 switches connected with N+7 gate driver circuits, while diode clamped or flying capacitor inverters require N-1 DC voltage supplies and 6(N-1) switches connected with 6(N-1) gate driver circuits. A prototype of the introduced configuration has been manufactured and the obtained simulation and experimental results ensure the feasibility of the proposed topology and the validity of the implemented modulation technique.

상보형(相補形) 트랜지스터에 의한 다중(多重) PWM 인버터에 관한 연구 (A Study on The Multi-PWM Inverter by Complementary Transistor)

  • 정연택;이종수;배상준;백종현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 하계종합학술대회 논문집
    • /
    • pp.515-517
    • /
    • 1989
  • This PWM inverter are used bridge circuit of two pair complementary transistor at each phase. The operation signals are 3 level PWM wave of W type and M type modulation, Which were obtained from switching time data by switching position calculation of triangular and sine wave. The output voltage waveforms of this inverter have the 5 level phase voltage and the 9 level line voltage of PWM.

  • PDF

CMOS 뉴런의 활성화 함수 (CMOS neuron activation function)

  • 강민제;김호찬;송왕철;이상준
    • 한국지능시스템학회논문지
    • /
    • 제16권5호
    • /
    • pp.627-634
    • /
    • 2006
  • CMOS 인버터 특성곡선의 기울기를 조절하는 방법과 y축으로 이동할 수 있는 방법을 제안하였다. 기울기의 변경과 y축으로 이동은 트랜지스터의 문턱 값을 조절하는 방법을 사용하였다. 그리고 특성곡선의 중심에서는 두 트랜지스터 모두 포화영역에 머물러 있음에 착안하여, 단극성 뉴런의 특성곡선을 만드는 방법을 제안하였다. 제안된 방법은 회로레벨의 시뮬레이션을 통해 검증하였으며, 회로레벨의 시뮬레이션은 OrCAD사의 PSpice(Professional Simulation Program with Integrated Circuit Emphasis)를 사용하였다.

Charge Balance Control Methods for a Class of Fundamental Frequency Modulated Asymmetric Cascaded Multilevel Inverters

  • Babaei, Ebrahim
    • Journal of Power Electronics
    • /
    • 제11권6호
    • /
    • pp.811-818
    • /
    • 2011
  • Modulation strategies for multilevel inverters have typically focused on synthesizing a desired set of sinusoidal voltage waveforms using a fixed number of dc voltage sources. This makes the average power drawn from different dc voltage sources unequal and time varying. Therefore, the dc voltage sources are unregulated and require that corrective control action be incorporated. In this paper, first two new selections are proposed for determining the dc voltage sources values for asymmetric cascaded multilevel inverters. Then two modulation strategies are proposed for the dc power balancing of these types of multilevel inverters. Using the charge balance control methods, the power drawn from all of the dc sources are balanced except for the dc source used in the first H-bridge. The proposed control methods are validated by simulation and experimental results on a single-phase 21-level inverter.

An Improved Carrier-based SVPWM Method By the Redistribution of Carrier-wave Using Leg Voltage Redundancies in Generalized Cascaded Multilevel Inverter

  • Kang, Dae-Wook;Lee, Yo-Han;Suh, Bum-Seok;Park, Chang-Ho;Hyun, Dong-Seok
    • Journal of Power Electronics
    • /
    • 제1권1호
    • /
    • pp.36-47
    • /
    • 2001
  • The carrier-based space vector pulse width modulation(SVPWM), which is considered as highly simple and efficient PWM technology, can be also used in multilevel inverters. The method was originally designed for the two-level inverter and developed to the diode clamped multilevel inverter structure. however it may be noted that it also cause bad switch utilization in cascaded multilevel inverter. This paper introduces an improved carrier-based SVPWM scheme, which is fully suitable for cascaded multilevel inverter topologies because it can achieve the optimized switch utilization through the redistribution of the triangular carrier waves considering leg voltage redundancies while having the advantages of the conventional carrier-based SVPWM. Using simulation and experimental results, the superior performance of new PWM method is shown.

  • PDF

A Study on Nonlinear Control Strategy for Three-phase Voltage Source PWM DC/AC Inverter based on the PCH Model

  • Mu, Xiaobin;Wang, Jiuhe;Bao, Xueyu
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권2호
    • /
    • pp.53-57
    • /
    • 2012
  • The mathematical model of a three-phase voltage source pulse-width modulation (PWM) DC/AC inverter is non-linear, and in view of the traditional linear control strategy it can not meet the requirements of designing a high-performance inverter. What's more, when the loads are not pure resistive loads, the inverter further requires that the controller possess high-performance. This paper proposes a nonlinear control strategy for the inverter called Passivity-based Control. We can alter the inverter model in three-phase abc coordinate to two-phase synchronous rotating dq coordinate for establishing the port-control Hamiltonian (PCH) model for this system. We can control the distribution of energy in the system to achieve the control aim. Simulation results show that the passivity-based control method can make this system possess a level of high-performance that is both robust and dynamic.

A New Method for Elimination of Zero-Sequence Voltage in Dual Three-Level Inverter Fed Open-End Winding Induction Motors

  • Geng, Yi-Wen;Wei, Chen-Xi;Chen, Rui-Cheng;Wang, Liang;Xu, Jia-Bin;Hao, Shuang-Cheng
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.67-75
    • /
    • 2017
  • Due to the excessive zero-sequence voltage in dual three-level inverter fed open-end winding induction motor systems, zero-sequence circumfluence which is harmful to switching devices and insulation is then formed when operating in a single DC voltage source supplying mode. Traditionally, it is the mean value instead of instantaneous value of the zero-sequence voltage that is eliminated, through adjusting the durations of the operating vectors. A new strategy is proposed for zero-sequence voltage elimination, which utilizes unified voltage modulation and a decoupled SVPWM strategy to achieve two same-sized equivalent vectors for an angle of $120^{\circ}$, generated by two inverters independently. Both simulation and experimental results have verified its efficiency in the instantaneous value elimination of zero-sequence voltage.

New Generalized PWM Schemes for Multilevel Inverters Providing Zero Common-Mode Voltage and Low Current Distortion

  • Nguyen, Nho-Van;Nguyen, Tam-Khanh Tu
    • Journal of Power Electronics
    • /
    • 제19권4호
    • /
    • pp.907-921
    • /
    • 2019
  • This paper presents two advanced hybrid pulse-width modulation (PWM) strategies for multilevel inverters (MLIs) that provide both common-mode voltage (CMV) elimination and current ripple reduction. The first PWM utilizes sequences that apply one switching state at the double ends of a half-carrier cycle. The second PWM combines the advantages of the former and an existing four-state PWM. Analyses of the harmonic characteristics of the two groups of switching sequences based on a general switching voltage model are carried out, and algorithms to optimize the current ripple are proposed. These methods are simple and can be implemented online for general n-level inverters. Using a three-level NPC inverter and a five-level CHB inverter, good performances in terms of the root mean square current ripple are obtained with the proposed PWM schemes as indicated through improved harmonic distortion factors when compared to existing schemes in almost the entire region of the modulation index. This also leads to a significant reduction in the current total harmonic distortion. Simulation and experimental results are provided to verify the effectiveness of the proposed PWM methods.

Implementation of a High Efficiency Grid-Tied Multi-Level Photovoltaic Power Conditioning System Using Phase Shifted H-Bridge Modules

  • Lee, Jong-Pil;Min, Byung-Duk;Yoo, Dong-Wook
    • Journal of Power Electronics
    • /
    • 제13권2호
    • /
    • pp.296-303
    • /
    • 2013
  • This paper proposes a high efficiency three-phase cascaded phase shifted H-bridge multi-level inverter without DC/DC converters for grid-tied multi string photovoltaic (PV) applications. The cascaded H-bridge topology is suitable for PV applications since each PV module can act as a separate DC source for each cascaded H-bridge module. The proposed phase shifted H-bridge multi-level topology offers advantages such as operation at a lower switching frequency and a lower current ripple when compared to conventional two level topologies. It is also shown that low ripple sinusoidal current waveforms are generated with a unity power factor. The control algorithm permits the independent control of each DC link voltage with a maximum power point for each string of PV modules. The use of the controller area network (CAN) communication protocol for H-bridge multi-level inverters, along with localized PWM generation and PV voltage regulation are implemented. It is also shown that the expansion and modularization capabilities of the H-bridge modules are improved since the individual inverter modules operate more independently. The proposed topology is implemented for a three phase 240kW multi-level PV power conditioning system (PCS) which has 40kW H-bridge modules. The experimental results show that the proposed topology has good performance.

Wavelet PWM Technique for Single-Phase Three-Level Inverters

  • Zheng, Chun-Fang;Zhang, Bo;Qiu, Dong-Yuan;Zhang, Xiao-Hui;Xiao, Le-Ming
    • Journal of Power Electronics
    • /
    • 제15권6호
    • /
    • pp.1517-1523
    • /
    • 2015
  • The wavelet PWM (WPWM) technique has been applied in two-level inverters successfully, but directly applying the WPWM technique to three-level inverters is impossible. This paper proposes a WPWM technique suitable for a single-phase three-level inverter. The work analyzes the control strategy with the WPWM and obtains the design of its parameters. Compared with the SPWM technique for a single-phase three-level inverter under the same conditions, the WPWM can obtain high magnitudes of the output fundamental frequency component, low total harmonic distortion, and simpler digital implementation. The feasibility experiment is given to verify of the proposed WPWM technique.