• Title/Summary/Keyword: Two-Degree-of-Freedom H Controller

Search Result 46, Processing Time 0.026 seconds

$H_2$ Design for the Square Decoupling Controllers Using LMI Method (LMI기법을 이용한 정방 비결합 제어기의 $H_2$설계)

  • Lee, Jong-Sung;Kang, Ki-Won;Cho, Yong-Suk;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2645-2647
    • /
    • 2000
  • This paper presents an LMI(Linear Matrix Inequalities) method for designing the optimal decoupling controller. The proposed controller based on the Two-Degree-of-Freedom configuration considers both the performance of controller and decoupling properties. The decoupling controller parameters are obtained from LMI method for computational efficiency.

  • PDF

A Vibration Control of Multi-layer Structure by LQ Type $H_{\infty}$ Control Theory (LQ 형 $H_{\infty}$ 제어기법에 의한 다층 구조물의 진동제어)

  • Yang, J.H.;Jeong, H.J.;Kim, C.H.;Byun, J.H.;Sim, S.H.
    • Journal of Power System Engineering
    • /
    • v.2 no.2
    • /
    • pp.41-46
    • /
    • 1998
  • This paper presents the vibration control for the two degree-of-freedom which is a reduced model of multi-layer structure. This reduced model is designed for the first and second order resonance in the low frequency domain where the disturbance such as the earth quake has the large energy. And a designed controller using the LQ type $H_{\infty}$ control theory shows the good performance for the impulse disturbance through the experimental results and the simulation results respectively.

  • PDF

A Fuzzy Robust Controller with Saturation for Robot Manipulators (로봇 매니퓰레이터의 포화요소를 갖는 퍼지견실 제어)

  • Park, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.104-109
    • /
    • 1997
  • A robust controller design to corrdinate a robot manipulator under unknown system parameters and bounded disturbance inputs is presented in this paper. Generally, robust controllers require high input torque so that they may face input saturation in actual application due to the power limitation of the actuator. To solve this problem, an improved robust controller with saturated input torque using a fuzzy logic control is proposed. Numerical examples are shown to validate the proposed controller using two degree-of-freedom planar arm.

  • PDF

[ $H_{\infty}$ ] Design for Square Decoupling Controllers Using Genetic Algorithm (유전 알고리즘을 이용한 정방 비결합 제어기의 $H_{\infty}$ 설계)

  • Lee, Jong-Sung
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.4
    • /
    • pp.47-52
    • /
    • 2005
  • In this paper, the genetic algorithm is used to design a fixed order square decoupling $H_{\infty}$ controllers based on the Two-Degree-of-freedom standard model. The proposed decoupling $H_{\infty}$ controller which is minimizes the maximum energy in the output signal is designed to reduce the coupling properties between the input/output variables which make it difficult to control a system efficiently. A minimal set of assumptions for existence of the decoupling controller formula is described in the state-space formulas. It is verified by an example.

A Design of Linear Multivariable Robust-Servo-System by Two-Degree-of-Freedom H$\infty$ Optimum Method (선형다변수계의 2자유도 H$\infty$ 최적방법에 의한 Robust-Servo System의 설계)

  • Hwang, C.S.;Kim, D.W.;Kim, M.S.;Kim, J.T.;Shim, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.282-284
    • /
    • 1992
  • In this paper, we deal with design method of two-degree-of-freedom control system which desired property of robustness and tracking can be achieved simultaneously, Controller is designed by means of model matching method and H$\infty$ weighted sensitivity minimization design method. Satisfactory result of design example is obtained by simulation.

  • PDF

Kinematics and Robust PID Trajectory Tracking Control of Parallel Motion Simulator (병렬형 모션 시뮬레이터의 기구학적 해석과 강인 궤적추종 PID 제어기의 설계)

  • Hong, Seong-Il
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.161-172
    • /
    • 2007
  • This article suggests an inverse kinematics analysis of a two degree of freedom spatial parallel motion simulator and design methodology of the robust PID controller. The parallel motion simulator consists of a fixed base and a moving frame connected by two serial chains, with each serial chain containing one revolute joint and two passive spherical joint. First, an inverse kinematics problems are solved in order to find the joint variable necessary to bring the end effector to track the desired trajectory. Second, an inverse optimal PID controller is proposed to track trajectories in the face of uncertainty. And the $H_{\infty}$ optimality and robust stability of the closed-loop system is acquired through the PID controller. Finally numerical results show the effectiveness of the PID controller that is designed by square/linear tuning laws.

$H_{\infty}$ Control of Two-Mass System with Resonance Ratio Control (공진비제어를 갖는 2관성계의 $H_{\infty}$ 제어)

  • Kim, Jin-Soo;Kim, Seoung-Beom;Kim, Hyun-Jung;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.504-506
    • /
    • 1996
  • In the industrial motor drive systems, a shaft torsional vibration is often generated when a motor and a load are connected with a flexible shaft. This paper treats the vibration suppression control of this system. The resonance ratio control is proposed for suppressing the torsional vibration. In this paper, first, the optimal resonance ratio is sellected and the controller to the resonance ratio controlled outward plant is designed based on $H_{\infty}$ control theory. Secondly, the two-degree-of-freedom controller, which includes the above $H_{\infty}$ controller, is designed in order to improve the tracking characteristics for the commanded speed. The control performances are examined by the computer simulations and it is clarified that the proposed speed control system is useful for two-mass system.

  • PDF

The Robust Controller Design for Lateral Control of Vehicles (차량의 횡방향 모델에 대한 강인 제어기 설계)

  • 김은주;하성기;정승권;이만형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.496-499
    • /
    • 2002
  • The LQG/LTR controller is a robust and stable control which is systematic method with a view of engineering. And the H$^{\infty}$ scheme is adopted for the design of the controller to reduce the effects of the disturbances. In this paper, LQG/LTR and H$^{\infty}$ Controller Design of Lateral Control System for an Automobile is developed with 3 DOF (degree-of-freedom) model. The performance has been compared for the employed two types of controllers via computed simulations. The results show that the H$^{\infty}$ controller provides more robustness property for the disturbances and lower control input.

The Robust Controller Design for Lateral Control of Vehicles (차량의 횡방향 모델분석 및 제어기 설계)

  • 김은주;하성기;배종일;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.318-321
    • /
    • 2002
  • The LQG/LTR controller is a robust and stable control which is systematic method with a view of engineering. And the H$^{\infty}$ scheme is adopted for the design of the controller to reduce the effects of the disturbances. In this paper, LQG/LTR and H$^{\infty}$ Controller Design of Lateral Control System for an Automobile is developed with 3 DOF (degree-of-freedom) model. The performance has been compared for the employed two types of controllers via computed simulations. The results show that the H$^{\infty}$ controller provides more robustness property for the disturbances and lower control input.

  • PDF

2 DOF robust performance controller design for linear system with time delay and parameter uncertainty (시간지연 및 파라미터 불확실성을 갖는 선형 시스템의 2 자유도 견실성능 제어기 설계)

  • 이갑래;정은태;최봉렬;박홍배
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.1
    • /
    • pp.43-53
    • /
    • 1997
  • A robust stability condition for linear systems with time delay in all variables and parameter uncertainties in all system matrices is derived. Robust performance condition that accounts for robust model-matching of closed loop system and disturbance rejection is also derived. Using the robust performance condition, robust $H^{\infty}$ controller and .mu.(sgructured singular value) controller with two-degree-of-freedom(2DOF) are designed. The controller structure is considered for $H^{\infty}$ controller, while uncertainity structure is considered for .mu. controller. Using the proposed method, $H^{\infty}$ and .mu. controllers for underwater vehicle with time delay and parameter variations are designed. Simulations of a design example with hydrodynamic parameter variations and disturbance are presented to demonstrate the achievement of good robust performance.ce.

  • PDF