• Title/Summary/Keyword: Two transformer

Search Result 552, Processing Time 0.021 seconds

Analysis, Design and Implementation of a Soft Switching DC/DC Converter

  • Lin, Bor-Ren
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.20-30
    • /
    • 2013
  • This paper presents a soft switching DC/DC converter for high voltage application. The interleaved pulse-width modulation (PWM) scheme is used to reduce the ripple current at the output capacitor and the size of output inductors. Two converter cells are connected in series at the high voltage side to reduce the voltage stresses of the active switches. Thus, the voltage stress of each switch is clamped at one half of the input voltage. On the other hand, the output sides of two converter cells are connected in parallel to achieve the load current sharing and reduce the current stress of output inductors. In each converter cell, a half-bridge converter with the asymmetrical PWM scheme is adopted to control power switches and to regulate the output voltage at a desired voltage level. Based on the resonant behavior by the output capacitance of power switches and the transformer leakage inductance, active switches can be turned on at zero voltage switching (ZVS) during the transition interval. Thus, the switching losses of power MOSFETs are reduced. The current doubler rectifier is used at the secondary side to partially cancel ripple current. Therefore, the root-mean-square (rms) current at output capacitor is reduced. The proposed converter can be applied for high input voltage applications such as a three-phase 380V utility system. Finally, experiments based on a laboratory prototype with 960W (24V/40A) rated power are provided to demonstrate the performance of proposed converter.

Unification of Buck-boost and Flyback Converter for Driving Cascaded H-bridge Multilevel Inverter with Single Independent DC Voltage Source

  • Kim, Seong-Hye;Kim, Han-Tae;Park, Jin-Soo;Kang, Feel-Soon
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.190-196
    • /
    • 2013
  • It presents a unification of buck-boost and flyback converter for driving a cascaded H-bridge multilevel inverter with a single independent DC voltage source. Cascaded H-bridge multilevel inverter is useful to make many output voltage levels for sinusoidal waveform by combining two or more H-bridge modules. However, each H-bridge module needs an independent DC voltage source to generate multi levels in an output voltage. This topological characteristic brings a demerit of increasing the number of independent DC voltage sources when it needs to increase the number of output voltage levels. To solve this problem, we propose a converter combining a buck-boost converter with a flyback converter. The proposed converter provides independent DC voltage sources at back-end two H-bridge modules. After analyzing theoretical operation of the circuit topology, the validity of the proposed approach is verified by computer-aided simulations using PSIM and experiments.

Optimal Reactive Power and Voltage Control Using A New Matrix Decomposition Method (새로운 행렬 분할법을 이용한 최적 무효전력/전압제어)

  • 박영문;김두현;김재철
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.3
    • /
    • pp.232-239
    • /
    • 1990
  • A new algorithm is suggested to solve the optimal reactive power and voltage control (optimal VAR control) problem. The model minimizes the real power losses in the system. The constraints include the reactive power limits of the generators, limits on the bus voltages and the operating limits of control variables-the transformer tap positions generator terminal voltages and switchable reactive power sources. The method presented herein, using a newly developed Jacobian decomposition method, employs linearized sensitivity relationships of power systems to establish both the objective function for minimizing the system losses and the system performance sensitivities relating dependent and control variables. The algorithm consists of two modules, i.e. the Q-V module for reactive power-voltage control, and load flow module for computational error adjustments. In particular the acceleration factor technique is introduced to enhance the convergence property in Q-V module. The combined use of the afore-mentioned two modules ensures more effective and efficient solutions for optimal reactive power dispatch problems. Results of the application of the method to a sample system and other worst-case systems demonstrated that the algorithm suggested herein is compared favourably with conventional ones in terms of computation accuracy and convergence characteristics.

  • PDF

Narrow Resonant Double-Ridged Rectangular Waveguide Probe for Near-Field Scanning Microwave Microscopy

  • Kim, Byung-Mun;Son, Hyeok-Woo;Cho, Young-Ki
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.406-412
    • /
    • 2018
  • In this paper, we propose a narrow resonant waveguide probe that can improve the measurement sensitivity in near-field scanning microwave microscopy. The probe consists of a metal waveguide incorporating the following two sections: a straight section at the tip of the probe whose cross-section is a double-ridged rectangle, and whose height is much smaller than the waveguide width; and a standard waveguide section. The advantage of the narrow waveguide is the same as that of the quarter-wave transformer section i.e., it achieves impedance-matching between the sample under test (SUT) and the standard waveguide. The design procedure used for the probe is presented in detail and the performance of the designed resonant probe is evaluated theoretically by using an equivalent circuit. The calculated results are compared with those obtained using the finite element method (Ansoft HFSS), and consistency between the results is demonstrated. Furthermore, the performance of the fabricated resonant probe is evaluated experimentally. At X-band frequencies, we have measured the one-dimensional scanning reflection coefficient of the SUT using the probe. The sensitivity of the proposed resonant probe is improved by more than two times as compared to a conventional waveguide cavity type probe.

Analysis and Implementation of a New Three-Level Converter

  • Lin, Bor-Ren;Nian, Yu-Bin
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.478-487
    • /
    • 2014
  • This study presents a new interleaved three-level zero-voltage switching (ZVS) converter for high-voltage and high-current applications. Two circuit cells are operated with interleaved pulse-width modulation in the proposed converter to reduce the current ripple at the input and output sides, as well as to decrease the current rating of output inductors for high-load-current applications. Each circuit cell includes one half-bridge converter and one three-level converter at the primary side. At the secondary side, the transformer windings of two converters are connected in series to reduce the size of the output inductor or switching current in the output capacitor. Based on the three-level circuit topology, the voltage stress of power switches is clamped at $V_{in}/2$. Thus, MOSFETs with 500 V voltage rating can be used at 800 V input voltage converters. The output capacitance of the power switch and the leakage inductance (or external inductance) are resonant at the transition interval. Therefore, power switches can be turned on under ZVS. Finally, experiments verify the effectiveness of the proposed converter.

Suppression of Common-Mode Voltage in a Multi-Central Large-Scale PV Generation Systems for Medium-Voltage Grid Connection (중전압 계통 연계를 위한 멀티 센트럴 대용량 태양광 발전 시스템의 공통 모드 전압 억제)

  • Bae, Young-Sang;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.31-40
    • /
    • 2014
  • This paper describes an optimal configuration for multi-central inverters in a medium-voltage (MV) grid, which is suitable for large-scale photovoltaic (PV) power plants. We theoretically analyze a proposed common-mode equivalent model for problems associated with multi-central transformerless-type three-phase full bridge(3-FB) PV inverters employing two-winding MV transformers. We propose a synchronized PWM control strategy to effectively reduce the common-mode voltages that may simultaneously occur. In addition, we propose that the existing 3-FB topology may also have the configuration of a multi-central inverter with a two-winding MV transformer by making a simple circuit modification. Simulation and experimental results of three 350kW PV inverters in a multi-central configuration verify the effectiveness of the proposed synchronization control strategy. The modified transformerless-type 3-FB topology for a multi-central PV inverter configuration is verified using an experimental prototype of a 100kW PV inverter.

A Study on the Algorithm for Single Phase Control of IGBT PWM Rectifier (IGBT PWM Rectifier의 각상 개별제어 알고리즘에 관한 연구)

  • Kim, Seung-Ho;Park, Jae-Beom;Tae, Dong-Hyun;Kim, Seung-Jong;Song, Joong-Ho;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.26-33
    • /
    • 2016
  • Recently, the use of transformer-less UPS has increased to improve the efficiency of UPS. However, transformer-less UPS is required in three-phase four-wire input IGBT PWM rectifier and the existing three-phase three-wire PFC algorithm cannot be applied in the three-phase four-wire system due to the neutral current problem of UPS input. To control the three-phase four-wire input IGBT PWM rectifier, there are two existing algorithms: 3D SVM and single phase control method. These two algorithms have advantages/disadvantages in controlling the rectifier. The single phase control method is unstable for controlling the rectifier and the 3D SVM method has a problem that must increase the L value of the input-side inductor considerably. Therefore, this paper proposes digital single phase control technology and another new algorithm considering the d-q control, to improve the characteristics of the existing control algorithm. In addition, this paper performed a simulation and experiment based on the proposed control algorithm. The simulation results showed that the proposed technology can control three-phase four-wire IGBT PWM rectifier in a stable manner and can also reduce the neutral current. The proposed algorithm is a useful tool for controlling the three-phase four-wire IGBT PWM rectifier.

Modeling and Strategic Startup Scheme for Large-Scaled Induction Motors (대용량 유도기 기동 특성 모델링 및 전략적 기동 방법에 관한 연구)

  • Jung, Won-Wook;Shin, Dong-Yeol;Lee, Hak-Ju;Yoon, Gi-Gab
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.748-757
    • /
    • 2007
  • This paper is intended to solve the technical problem that fails in large-capacity induction motor starting due to serious voltage drop during starting period. One induction motor that is established already can reach in steady-state using reactor starting method but the voltage magnitude of PCC (point of common coupling) has dropped down a little. When the same capacity induction motor is installed additionally in the PCC, where the existing induction motor is operating, voltage drop becomes more serious by starting of additional induction motor. As a result, the additional induction motor fails in starting. Therefore, voltage compensation method is proposed so that all of two induction motors can be started completely. First, modeling technique is described in order to implement starting characteristics of large induction motor. And then, this paper proposes strategic starting scheme by proper voltage compensation that use no-load transformer tap control (NLTC) and step voltage regulator (SVR) for starting of two large induction motors successfully and improving the feeding network voltage profile during the starting period. The induction motor discussed in this paper is the pumped induction motor of 2500kVA capacity that is operating by KOWACO (Korea Water Resources Corporation). Modeling and simulation is conducted using PSCAD/EMTDC software.

  • PDF

Health Status of Electric Utility Workers Exposed to Extremely Low Frequency Electromagnetic Field (ELF-EMF) (근로자들의 극저주파 전자파 노출 수준에 따른 인체 영향 평가)

  • Park, Kyoung-Ho;Ahn, Yong-Ho;Kim, Tai-Jeon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.37 no.3
    • /
    • pp.220-227
    • /
    • 2005
  • Recently, the use of an electrical apparatus has brought up concerns of health risks from exposure to electromagnetic fields. EMF is composed of electric fields and magnetic fields. Heavy exposure to EMF can occur only in the vicinity of high-voltage overhead transmission lines, close to transformers and underground cables, and also close to large electrical machinery. In this thesis I have investigated the hypothesis of the correlation between occupational exposure to ELF-EMF and the risks of leukemia, anemia, cancer. Therefore, the aim of this study is to investigate whether or not ELF-EMF emitted from electric power stations and transformer substations affect some hematological parameters and tumor markers of electric utility workers. The hematological test results and tumor markers under investigation were similar in the two groups but some of parameters such as RBC, AFP, LDH showed significant difference between the two groups from two sample t-test (p<0.05). The exposure group showed increased LDH level compared to the control group by two sample t-tests. In addition, the abnormal LDH level in the exposure group was observed to be clinically significant by ${\chi}^2$-test. However, the levels of RBC, AFP observed were not clinically significant by ${\chi}^2$-test (p>0.05). These results suggested that ELF-EMF does not affect most blood test parameters except LDH of electric utility workers.

  • PDF

Estimating the Location of Partial Discharge Signals (부분 방전 신호의 위치 추정)

  • 유치형;정찬수;김재철
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.5
    • /
    • pp.80-85
    • /
    • 1997
  • Preventive diagnosis technique of power transforms is very important for highly reliable operation of power systems, and especially that of online transformer is needed in view of economy. Acoustic methods for partial discharge points have been studied abroad since 1960's in earnest. Electric-ultrasonic locating method by which partial discharges are found through detecting the electric and ultrasonic signal generated in partial discharge and ultrasonic-ultrasonic locating method by which partial discharges are found through detecting two ultrasonic signal with two ultrasonic sensor have been researched in our country. By using this ultrasonic-ultrasonic locating method, it was proposed of graphical determination technique of partial discharge points one dimension, two dimension, three dimension. But in locating partial discharges, they have assumed that the number of signal origin is one. So in this study we suggests a method of locating and knowing the number of signal origins when there are several origins by using ultrasonic-ultrasonic method.

  • PDF