http://dx.doi.org/10.6113/TKPE.2014.19.1.31

중전압 계통 연계를 위한 멀티 센트럴 대용량 태양광 발전 시스템의 공통 모드 전압 억제

배영상¹, 김래영[†]

Suppression of Common-Mode Voltage in a Multi-Central Large-Scale PV Generation Systems for Medium-Voltage Grid Connection

Young-Sang Bae¹, and Rae-Young Kim[†]

Abstract – This paper describes an optimal configuration for multi-central inverters in a medium-voltage (MV) grid, which is suitable for large-scale photovoltaic (PV) power plants. We theoretically analyze a proposed common-mode equivalent model for problems associated with multi-central transformerless-type three-phase full bridge(3-FB) PV inverters employing two-winding MV transformers. We propose a synchronized PWM control strategy to effectively reduce the common-mode voltages that may simultaneously occur. In addition, we propose that the existing 3-FB topology may also have the configuration of a multi-central inverter with a two-winding MV transformer by making a simple circuit modification. Simulation and experimental results of three 350kW PV inverters in a multi-central configuration verify the effectiveness of the proposed synchronization control strategy. The modified transformerless-type 3-FB topology for a multi-central PV inverter configuration is verified using an experimental prototype of a 100kW PV inverter.

Keywords: central inverter, medium voltage, common mode, leakage current

1. 서 론

최근 WWF(World Wildlife Fund)는 Ecofys·OMA와 공동 작성한 보고서^[1]에서 2050년까지 신재생 에너지로 의 전환 비율이 100% 가능하다는 에너지 시나리오를 발 표했다. 더불어 미래의 전력 수요 증가에 대비하여 현재 화력 발전소나 원자력 발전소등과 같은 안정적인 대용 량 발전시설을 신재생 에너지 시설로 보유하는 일은 국 가 산업의 미래에 있어 매우 중요한 일이라고 할 수 있 다. 이를 뒷받침 하듯 산업용 및 발전용 계통 연계형 태 양광 인버터의 세계 시장은 더욱 확대 되고 있고 태양 광 발전소의 개념으로 설치 규모도 MW급으로부터 수 백 MW급에 이르기까지 점차 대용량화 되어가고 있는 추세이다^[2]. 각 발전소의 인버터 용량으로는 1~3MW급 은 주로 100~250kW급 정도의 인버터가 적용되고, 그 이상의 대용량 발전소에는 주로 350~500kW급 인버터 를 병렬로 운전해 시스템 효율을 상승 시키고 있다. 대 용량 계통 연계형 태양광 인버터는 용량 및 국가별 전 압 구분 등의 계통 규정에 따라 차이가 있지만, 대부분 전체적인 발전설비의 효율을 증대시키기 위해 20kV 이 상의 중전압 계통에 바로 연계한다. 이는 중전압 변압기 의 구조에 따라 전체 시스템의 구성과 효율이 달라지고, 그림 1과 같이 무변압기형 인버터도 계통과 전기적으로 분리하게 된다는 것을 의미한다. 따라서 저압계통에 직 접 연결하는 센트럴 방식의 무변압기형 인버터와는 달 리 태양광 모듈의 기생 캐패시터로 인한 누설전류의 문 제^{[3][4]}도 사라지게 된다. 그러나 이러한 인버터들을 복권 중전압 변압기를 채택하여 멀티 센트럴 방식으로 구성 하면 순환 전류의 형태로 누설전류에 대한 문제가 다시 부각 될 수밖에 없다. 왜냐하면 태양광 모듈의 기생 캐 패시터들로 인하여 병렬연결 된 인버터간의 입력이 공 통으로 연결되기 때문이다.

이 문제의 해결을 위해, 대부분의 인버터 업체들은 기

Paper number: TKPE-2014-19-1-5

Print ISSN: 1229–2214 Online ISSN: 2288–6281

 ⁺ Corresponding author: rykim@hanyang.ac.kr, Dept. of Electrical and Biomedical Eng., Hanyang University Tel: +82-2-2220-0341 Fax: +82-2-2220-0570
 ¹ Dept. of Electrical Eng., EECS Lab, Hanyang University

¹ Dept. of Electrical Eng., EECS Lab, Hanyang University Manuscript received Nov. 11, 2013; accepted Nov. 25, 2013

존에 보유하고 쉽게 접근이 가능한 일반적인 3상 풀 브 리지(3-FB) 토폴로지가 아닌 또 다른 특별한 제어와 다 른 토폴로지의 기술을 사용할 수밖엔 없다^{[5]-[9]}. 한편, 이 외에 누설 전류를 피하기 위한 다른 방법으로는 멀티 권선 변압기 구조를 사용하는 방법이 있다. 하지만 굳이 태양광 모듈의 접지를 필요로 하지 않는 곳에서는 멀티 권선의 중전압 변압기를 사용하는 것은 가격 및 효율 면에서 바람직하지 못하며 복권 변압기를 채택한 구조 로 중전압 계통에 연계하는 방법이 더 바람직하다.

본 논문에서는 멀티 센트럴 태양광 인버터의 구조에 서 발생할 수 있는 공통 모드 전압(Common-mode voltage)을 효과적으로 줄이기 위하여 각 인버터의 PWM 신호를 동기화 시키는 동시에 기존의 3-FB 토폴 로지도 간단한 회로의 변경만으로 복권 중전압 변압기 를 통한 멀티 센트럴 인버터의 구성이 가능하다는 것을 제시한다. 마지막으로 제안된 전략을 시뮬레이션과 실험 결과를 통해 효과적으로 검증하였다.

대용량 계통 연계 태양광 발전 시스템을 위한 태양광 인버터의 유형들

2.1 중전압 계통 연계를 위한 멀티 센트럴 인버터의 구성 방식

계통 연계형 태양광 인버터는 설치 용량뿐만 아니라 태양전지 모듈의 조합을 어떠한 유형의 입력으로 가져 가느냐에 따라 다양하게 분류를 할 수 있다^{[10][11]}.

이 중 센트럴 인버터는 최대 전력 점 추종(MPPT)의 효율은 가장 좋지 못하지만 높은 출력 정격과 유지보수, 신뢰성 개선에 있어 접근하기가 용이하다. 그러나 인버 터 고장 시 전체 시스템이 작동하지 못할 뿐만 아니라 대단위의 발전소 같은 경우 단일 MPPT를 사용함으로 써 전체 태양광 발전 효율도 떨어지는 단점을 가지고 있다. 따라서 그림 2와 같이 500kW급 이상의 발전소 단 위 규모에서는 이와 같은 단점을 보완하기 위한 방법으 로 센트럴 인버터의 출력을 병렬 연결해 하나의 대용량 인버터 시스템을 구현하는 방식인 멀티 센트럴 방식이 선호되고 있다. 즉, 발전 시스템 구성 시 한대의 인버터 가 아닌 여러 대의 인버터로 구성되어 있어 멀티 MPPT로 최대의 효율성을 확보할 수가 있다. 또한 고장 시에도 정상적인 인버터의 동작만으로 발전량을 확보함 으로써 태양광발전 설비에 대한 신뢰성을 향상 시킬 수

Fig. 1 System configuration of transformerless PV inverter connected to an MV grid via an MV transformer

있으며 그 구성 방식은 그림 2와 같이 크게 4가지 방식 으로 나타낼 수 있다.

그림 2의 (a)는 인버터 내에 저압 변압기가 내장되어 있는 형태로 만일 계통규정 혹은 시스템 설치자의 요구 에 따라 태양광 모듈의 접지를 반드시 필요로 하는 경 우 용이한 측면이 있고 인버터간의 전기적 분리가 되어 있어 안전성에 가장 유리한 면이 있다. 따라서 중전압 변압기를 복권으로 쉽게 사용할 수 있는 장점도 가지고 있다. 하지만 인버터 내부 저압 변압기의 효율 및 가격, 중량등의 측면에서 인버터가 가지는 단점이 너무 많아 그림 2의 (b)와 (c)의 구조 같은 다권선 변압기의 사용 으로 안전성 측면뿐만 아니라 전체 시스템 효율의 상승 면에서도 더 선호 시 되고 있다. 또한 효율과 가격, 기 술적인 접근성 측면에서 유리한 3-FB 인버터의 채택이 가능한 장점이 있다. 하지만 굳이 태양광 모듈의 접지를 필요로 하지 않는 곳에서는 멀티 권선의 중전압 변압기

Fig. 2 Types of multi-central PV inverters with an MV transformer: (a) a multi-central inverter with its own built-in low-voltage transformer and two-winding MV transformer; (b) a multi-central transformerless inverter with a three-winding MV transformer; (c) a multi-central transformerless inverter with a four-winding MV transformer; (d) a multi-central transformerless inverter with a two-winding MV transformer

Fig. 3 Form of leakage current occurrence in a multi-central transformerless PV inverter with a two-winding MV transformer

를 사용하는 것은 가격 및 효율 면에서 바람직하지 못 하며 그림 2의 (d)와 같이 복권변압기를 채택한 구조로 중전압 계통에 연계하는 방법이 더 바람직하다. 그런데 이 방법의 경우 그림 3에서와 같이 모듈의 기생 캐패시 터들(*Cst., Cst., Cst.)*로 인하여 각 인버터의 출력뿐만이 아니라 입력도 공통으로 연결이 된다. 이 기생 캐패시턴 스들은 태양광 어레이의 직류 단 "+"와 "-"단자 모두에 나타나는데 이로 인해 각 인버터 간에는 원치 않는 순 환전류의 형태로 누설전류가 발생하며 이는 전체 시스 템의 손실 및 안전성에 중대한 문제를 일으키게 된다.

Fig. 4 PV module configuration

Fig. 5 Common- and differential-mode models of the traditional 2 × 3-FB inverters: (a) a multi-central transformerless PV inverter with a two-winding MV transformer and (b) an equivalent circuit of common- and differential-modes

2.2 복권 중전압 변압기를 가진 멀티 센트럴 무변압 기형 태양광 인버터의 공통 모드와 차동 모드 전 압 (Differential-mode voltage)의 등가 모델^{[12]-[15]}

그림 4에서와 같이 모든 태양광 모듈은 프레임과 대 지 사이에 구조적인 특징으로 인하여 기생 캐패시턴스 가 존재하며 이는 전체 시스템의 많은 문제점을 야기한 다. 특히 저전압 계통에 연결되는 무 변압기형 구조에 서는 계통의 접지와 태양광 모듈의 프레임 사이가 전기 적으로 연결되고 누설전류로 인한 다음과 같은 문제들 을 발생 시킨다.

- 1) 감전으로 인한 안전 문제
- 2) 인버터 출력 전류의 고조파 증가
- 3) EMC(Electromagnetic compatibility) 문제 증대
- 4) 태양광 모듈의 열화 및 전체 시스템의 손실 증가

따라서 계통 규정에서는 누설 전류의 크기를 엄격히 규제 하고 있으며 계통 연계형 태양광 인버터는 이를 반드시 축소해야만 한다^[16].

그림 5는 복권변압기와 함께 20kV 이상의 중전압 계 통에 바로 연계하는 대용량 태양광 발전시스템에서 두 대의 무 변압기형 3상 풀브리지(2×3-FB) 인버터를 멀 티 센트럴로 구성한 모습과 그 공통 모드와 차동 모드 의 등가회로이다. 해석을 위해 등가 모델에서 추가 된 기생 소자들은 다음과 같다.

- 1) Zet는 접지와 기생 캐패시터 사이의 임피던스
- 2) C_{st}, C_{st}는 태양광 모듈의 프레임과 접지 사이에 발 생하는 기생 캐패시턴스
- 3) ZtA, ZtB, ZtC는 인버터들 간의 연결 배선 임피던스

이를 기반으로 기생 캐패시터에 걸리는 공통 모드와 차동 모드 전압을 계산하면 다음 수식들과 같이 나타낼 수 있다.

$$v_{cst} = v_{A2P2} - L_{f,A2} \frac{di}{dt} + v_{ZtA} + L_{f,A1} \frac{di}{dt} + v_{A1N1}$$
(1)

$$v_{cst} = v_{B2P2} - L_{f,B2} \frac{di}{dt} + v_{ZtB} + L_{f,B1} \frac{di}{dt} + v_{B1N1}$$
(2)

$$v_{cst} = v_{C2P2} - L_{f,C2} \frac{di}{dt} + v_{ZtC} + L_{f,C1} \frac{di}{dt} + v_{C1N1}$$
(3)

여기서 VAINI, VBINI과 VCINI은 상측 인버터의 출력 단 과 태양광 모듈의 "-" 단자(N1) 사이의 전압, VA2P2, VB2P2와 VC2P2는 하측 인버터의 출력 단과 태양광 모듈 의 "+" 단자(P2) 사이의 전압, L_{FAI}, L_{BI}과 L_{KCI}은 상측 인버터의 필터 인덕턴스, L_{FA2}, L_{B2}와 L_{KC2}는 하측 인버 터의 필터 인덕턴스이다.

한편, Z_tA, Z_tB, Z_tC⁴ 값은 실제 매우 작고, 접지 된 방 열판과 IGBT 스위치 사이에 기인된 기생 캐패시턴스 값들은 인버터의 모든 레그(leg)에 거의 같으며 필터 인 덕턴스들과 병렬로 연결 되어 있다. 따라서 만약 기생 캐패시턴스 값들이 다르더라도 그 크기는 매우 작기 때 문에 영향력 또한 무시할 수 있다.

따라서 3상평형인 경우를 가정하면 최종 기생 캐패시 터에 걸리는 전압은 수식 (1)+(2)+(3)으로 다음과 같이 구할 수 있다.

$$v_{cst} = \frac{v_{A2P2} + v_{A1M} + v_{B2P2} + v_{B2M} + v_{C2P2} + v_{C2M}}{3} \tag{4}$$

만약, 3상이 불평형 또는 인덕터에 걸리는 전압의 크 기가 다르다고 해도 차동 모드 전압은 저주파의 형태로 나타나므로 다음 식과 같이 이 전압으로 인한 캐패시터 에 흐르는 누설전류의 크기는 무시할 수 있을 정도로 작다.

$$i_{cst} = \frac{v_{cst}}{Z_{cst}} = \omega C_{st} v_{cst}$$
(5)

그러나 수식 (4)에서와 같이 기생 캐패시터에 걸리는 공통 모드 전압은 상측과 하측 인버터의 스위칭 전압을 포함하며 두 인버터의 스위치에 걸리는 전압이 완전히 일치 하지 않는 한 스위칭 주파수 성분의 전압이 유기 될 수밖에 없다. 다시 말해, 접지 저항을 고려하더라도 이 전압으로 인해 저 전압 계통에 연결되는 무변압기형 인버터와 마찬가지로 멀티 센트럴 인버터가 비록 복권 중전압 변압기로 절연을 하더라도 순환전류의 형태로 누설전류가 발생하게 된다는 것이다.

공통 모드 전압을 축소하기 위해 제안된 멀티 센트럴 무변압기형 태양광 인버터 시스템의 구성 전략

3.1 CAN(Controller Area Network) 통신을 이용한 타이머 인터럽트 동기화^{[17]-[19]}

멀티 센트럴 시스템에 병렬 연결된 각각의 태양광 인 버터는 DSP(Digital signal processor)도 개별적으로 사 용하기 때문에 비록 같은 사양의 DSP 일지라도 PWM 을 발생시키기 위한 타이머 인터럽트의 속도는 절대적 으로 일치할 수가 없다. 그림 6과 표 1에서와 같이 복권 변압기를 사용한 종래의 무변압기형 멀티 센트럴 태양 광 인버터 시스템에서는 이러한 타이머 인터럽트의 비 동기화로 인해 기생 캐패시터에 약 0V_{DV} 에서 -2V_{DV} 만 큼의 변동 폭이 더 큰 전압을 유기하게 된다. 따라서 앞 서 설명된 바와 같이 누설 전류로 인한 전체 시스템에 많은 문제를 초래하게 된다.

Table 1 Switch voltages for asynchronous switching sequences of the traditional 2 \times 3–FB PV inverters

Switching voltages of upper inverter			Switching voltages of lower inverter			Parasitic voltage
V_{SW11}	V _{SW} 21	V _{SW} 31	V_{SW12}	V_{SW22}	V_{SW32}	Vcst
V_{PV}	V_{PV}	V_{PV}	0	0	V_{PV}	$-V_{PV}/3$
0	V_{PV}	V_{PV}	0	V_{PV}	V_{PV}	$-V_{PV}$
0	0	V_{PV}	V_{PV}	V_{PV}	V_{PV}	$-5V_{PV}/3$
0	0	0	V_{PV}	V_{PV}	V_{PV}	$-2V_P$
0	0	0	0	V_{PV}	V_{PV}	$-5V_{PV}/3$
0	0	V_{PV}	0	0	V_{PV}	$-V_{PV}$
0	V_{PV}	V_{PV}	0	0	0	$-V_{PV}/3$
V_{PV}	V_{PV}	V_{PV}	0	0	0	0

이 문제를 해결하기 위해 제안하는 멀티센트럴 무변 압기형 태양광 인버터 시스템의 구성 전략 중 하나는 CAN통신의 특성을 이용하여 DSP 내의 타이머 인터럽 트를 동기화 시키는 방법이다.

적용한 CAN통신의 속도는 200Kbps이고 데이터 프레 임은 그림 7과 같이 총 76비트 이므로 프레임의 길이 *Lr*는 380us이다. 마스터(Master)는 오직 타이머 인터럽 트 동기화를 목적으로 하여 주기적으로 CAN 데이터를 브로드캐스트(Broadcast) 한다. 따라서 슬레이브(Slave) 는 마스터가 보낸 CAN 데이터를 수신만 하고 응답하지 는 않는다. 마스터와 슬레이브 간 CAN 통신 시 발생하 는 주요 인터럽트와 시퀀스 다이어그램을 표현하면 그

			E						
S ₁₁	0	1	1	1	1	1	1	0	
S ₂₁	0	0	1	1	1	1	0	0	Upper Inverter
S ₃₁	0	0	0	1	1	0	0	0	
S ₁₂	1	1	0	0 -	1	1	1	1	
S ₂₂	1	0	0	0	0 -	1	1	1	Lower Inverter
S ₃₂	0	0	0	0	0	0	1	1	

Fig. 6 Asynchronous switching sequences of upper and lower inverters in traditional 2 × 3-FB PV inverters

		1	$L_F = 380 us$			
S O F	Arbitration Field	Control Field	Data Field	CRC Field	ACK Field	EOF
1 Bit	11 Bit	6 Bit	4 Byte	16 Bit	2 Bit	7 Bit

Fig. 7 CAN data frame

Fig. 8 Communication between the master and slave: (a) main interrupt and (b) sequence diagram

림 8과 같다. 송, 수신의 지연시간은 실험에 의해서 획 득했으며 슬레이브 DSP의 PWM 타이머 인터럽트가 마 스터보다 앞서는지 혹은 뒤지는지를 판단하고 타이머 인터럽트의 레지스터를 증가 혹은 감소시킨다. 이러한 방법으로 만약 PWM 동기화를 하면 기생 캐패시터에 걸리는 공통 모드 전압의 최대치는 최소한 피할 수 있 다. 하지만 멀티 센트럴 인버터의 구조상 태양광 어레이 가 독립적으로 설치되고 병렬로 연결 된 무 변압기형 태양광 인버터가 멀티 MPPT를 가지고 독립적인 제어 로 운전을 하기 때문에 여전히 기생 캐패시터에 걸리는 공통 모드 전압은 근본적으로 막을 수는 없다. 수식 (6) 은 동기화 후 기생 캐패시터에 걸리는 전압의 크기이다.

$$v_{cst,sync} = -v_{pv} \pm \left(\frac{1}{3} \cdot v_{pv}\right) \tag{6}$$

3.2 3-FB 토폴로지를 이용한 복권 변압기를 가진 멀티 센트럴 무변압기형 태양광 인버터 시스템 을 위한 출력 필터 연결의 개선

앞에서 언급한 바와 같이 종래의 3-FB 인버터를 이 용하여 복권 변압기를 가지는 멀티 센트럴 무변압기형 태양광 인버터로 구성할 시 인버터간의 공통 모드 전압 으로 인한 누설전류는 피할 수 없게 된다. 따라서 NPC 토폴로지 혹은 다른 형태의 멀티레벨 태양광 인버터 ^[20]-22]로 멀티 센트럴 시스템을 구성하거나 또는 그림 2 의 (c)와 같이 비싸고 제작이 어려운 다권선의 중전압 변압기를 채택하는 것이다. 본 논문에서는 앞서 설명 된 PWM 동기화 방법과 함께 그림9(a)와 같이 간단한 출력 필터 회로의 변경만으로 누설전류의 문제를 피할 수 있 는 멀티 센트럴 인버터의 구조를 제안한다. 그리고 기생 캐패시터에 걸리는 공통 모드 및 차동 모드 전압의 해 석을 위한 등가 회로는 그림 9(b)와 같다.

개선한 토폴로지의 구조는 기본적으로 이전과 같지만, 츨력 *LC*_f 필터의 구조에서 필터 *C*_f의 구조를 △-Y로 혼용하여 사용하였다. 그리고 *C*_f의 접지단을 PV의 "-" 혹은 "+"에 연결하는 구조이다. 이렇게 하면 이전의 멀 티 센트럴 토폴로지에서 발생한 기생 캐패시터의 스위 칭 주파수 성분의 공통 모드 전압은 *LC*_f 필터로 인하여 거의 사라지게 된다. 왜냐하면 그림 9(b)의 등가회로에 서 볼 수 있듯이 공통 모드 전압들은 인버터의 출력 LC 필터와 폐루프를 형성하게 되기 때문이다. 따라서 누설 전류의 크기도 현격히 줄일 수가 있다. 여기에서 *C*_f의 설계 값은 PV 어레이의 설치 용량에 따른 기생 캐패시 턴스 *C*_{st}의 값보다 훨씬 크게 되도록 설계가 되어야한 다. 또한 *LC*_f의 차단 주파수도 기생 캐패시턴스에 걸리

Fig. 9 Common-mode and differential-mode model of the modified 2×3-FB inverters: (a) A modified multi-central transformer-less PV inverter with 2-winding MV transformer and (b) Equivalent circuit of common-mode and differential-mode

			Modified	
	Multi- winding MV transformer	Two-	system	
Topology		winding MV transformer	with two-	
ropology			winding	
			MV	
			transformer	
Cost and size	Expensive and bigger	Lower cost and compact	Lower cost	
			and	
			compact	
Leakage	Vory low	High	low	
current	very low	Tiigii	IOW	
Output			Smaller	
filter	Smaller	Smaller	or modium	
size				

Table 2 Comparison of multi-central system

는 스위칭 성분을 없애 줄 만큼 낮게 선정 해 주어야한 다. 만일, 기존 *L*,*C*_f_A의 설계에서 *L*_f 혹은 *C*_f_A의 값이 작 다면 *L*, 값도 다시 설계를 고려해야 되거나 *L*,*C*_f, 로 필터 설계가 되어야 할 것이다. 그러나 일반적으로 3-FB 인 버터의 *L*,*C*_f_A의 설계에서 *C*_f_A가 *C*_s, 보다 훨씬 크게 설계 가 되고 3 × *C*_f_A = *C*_f, 이기 때문에 *C*_f_A를 분리한 *C*_f_A*C*_f 필터의 구조가 가능하다. 또한 개선된 토폴로지는 멀티 센터럴 태양광 인버터의 인터럽트 동기화와 혼용하기 때문에 *C*_f 필터도 작게 설계가 가능하다. 결과적으로 기존의 3-FB 토폴로지에서 추가적인 구성을 최소한으 로 하여 복권 중전압 변압기를 가지는 멀티 센트럴 무 변압기형 태양광 인버터 시스템으로의 접근이 가능하다 고 할 수 있다. 마지막으로 저압 변압기 내장형을 제외 한 앞에서 언급했던 3-FB 인버터를 가진 멀티 센트럴 시스템들과 그 특징을 표 2에 비교하였다.

4. 시뮬레이션

시뮬레이션에 사용한 파라미터들은 표 3과 같다. 350kW급 무변압기형 계통연계 태양광 인버터 3대를 병 렬 연결하여 멀티 센트럴로 구성했으며 복권 중전압 변 압기를 채택했다.

종래의 3-FB 350kW 인버터 제품의 *L_tC_f*△ 필터 값은 65µH와 200µF(40µF×5)이다. 그런데 *L_tC_f*의 변환 시 *L_f* 의 값이 작아 *C_{fY}* 값이 너무 커지게 된다. 따라서 *L_t* 의 값을 두 배로 하고 *C_f*△ 값을 80µF(40µF×2)로 설계 하였 다. 설계 한 *L_tC_f*의 차단 주파수는 다음과 같다.

$$\frac{1}{2\pi\sqrt{L_f C_{fy}}} = 1.813 kHz \tag{7}$$

이 값은 누설 전류의 규정과 기생 임피던스 값에 따 라 $C_{f\Delta}$ 를 줄이고 C_{fY} 를 더 크게 하여 조절 할 수 있다. 그리고 개선한 멀티 센트럴 토폴로지와 PWM 동기화의

Parameters	Multi-central system with traditional 3FB	Modified multi-central system with 3FB △-Y
Rated output power	3 × 350kWac	3 × 350kWac
Turn ratio of two-winding MV Tr.	290V : 22.9kV	290V : 22.9kV
Grid frequency	50Hz	50Hz
LC filter	<i>L</i> ; 65µН, D-type <i>C</i> _f : 200µF	L_{f} 130µH, D-type $C_{f\Delta}$: 80µF Y-type $C_{f\Lambda}$: 60µF
Switching frequency	3kHz	3kHz
Leakage components	C_{st} : 1µF, Z_{et} : 10Ω	C_{st} 1µF, Z_{et} 10 Ω
PV voltages	500V, 550V, 600V	500V, 550V, 600V

타당성 검증을 위하여 MATLAB을 이용하여 시뮬레이 션을 수행하였다.

그림 10과 11은 모두 종래의 3-FB 토폴로지를 이용 하여 시뮬레이션을 실시한 결과이다. 차이점은 그림 10 은 두 인버터간의 PWM 동기화를 하지 않은 결과로 그 림 11과 구별된다. 결과에서도 알 수 있듯이 동기화를 하지 않은 그림 10에서 기생 캐패시터에 걸리는 공통 모드 전압은 -2V_{pv}의 최대 전압이 걸리는 것을 확인할 수 있지만 그림 11은 상대적으로 PWM 동기화로 인하 여 수식 (6)과 같이 $-\frac{2}{3}V_{pv} \sim -\frac{4}{3}V_{pv}$ 로 작게 걸리는 것 을 확인할 수 있다.

하지만 비록 동기화의 적용으로 인하여 공통 모드 전압을 크게 줄이는 효과는 보았지만 여전히 누설전류 는 크게 흐른다는 것을 알 수 있다. 따라서 본 논문에서

Fig. 10 Multi-central system with asynchronous timer interrupt and traditional 3-FB topology

제안한 전략인 PWM 동기화와 함께 3-FB △-Y 토폴로 지를 똑같은 조건으로 적용하여 시뮬레이션을 실시하였 으며 그 결과 그림 12와 같이 공통 모드 전압과 누설 전류의 크기 모두 현저히 축소된 모습을 확인하였다.

5.실 험

제안된 방법들의 실험을 통한 검증을 위해 다음과 같 이 두 가지로 분리하여 테스트 단지를 구성하였다.

- PWM 동기화의 검증을 위한 복권 중전압 변압기를 가진 1MW급 멀티 센트럴 기존 3-FB 무변압기형 태양광 인버터 발전 시스템
- 개선된 멀티 센트럴 시스템의 검증을 위한 100kW급
 3-FB △-Y 태양광 인버터 시작품

우선 PWM 동기화 검증을 위한 제품과 실험 구성 도 는 각각 그림 13(a),(b)와 같다. 실제 1MW급 태양광 어 레이를 입력으로 기존 350kW 3-FB무 변압기 형 인버

Fig. 11 Multi-central system with synchronous timer interrupt and traditional 3-FB topology

synchronous timer interrupt and $3\text{-FB} \bigtriangleup \text{-Y}$ topology

 Table 4
 1MW Multi-central system specification for PWM synchronization experiments

Parameters	Traditional 3-FB inverters		
Rated output power	3 × 350kWac		
Turn ratio of a	290V : 22.9kV		
two-winding MV Tr.			
Grid frequency	60Hz		
I C filtor	<i>L</i> ; 65µН,		
LC IIItei	D-type $C_{f \bigtriangleup}$: 200 μ F		
Switching frequency	3kHz		
PV voltages	690V, 700V, 690V		

터 세 대를 병렬 연결하여 1MW급으로 구성하였으며 복권 중전압 변압기를 통해 계통에 연계하였다. 실험에 사용된 시스템 사양은 표 4와 같으며 그림 14는 비 동 기 타이머 인터럽트를 사용하는 경우에서의 실험 결과 들을 보여준다. 본 논문에서의 분석과 같이 PWM 동기 화를 하지 않으면 기생 캐패시터에 걸리는 공통 모드

Fig. 13 (a) 1MW test bed of 350 kW traditional 3-FB transformerless PV inverter and (b) 1MW multi-central system configuration diagram for PWM synchronization experiments

Fig. 14 Asynchronous timer interrupt with traditional 3 × 3-FB inverters - Voltage: 350V/div, 5ms/div, Current: 10mV/div (= 5A/div), 5ms/div, Zoom: 100µs/div

Fig. 15 Synchronous PWM waveform of traditional 3 × 3-FB inverters - Voltage: 350V/div, 5ms/div, Current: 10mV/div (= 5A/div), 5 ms/div, Zoom: 100µs/div

Fig. 16 Experiment result of the traditional 3 × 3-FB inverter with PWM synchronization – Voltage: 350V/div, 5ms/div, Current: 10mV/div (= 5A/div), 5ms/div, Zoom: 100µs/div

Fig. 17 Experimental configuration diagram for experimental of the 100kW 3-FB △-Y PV inverter

Table 5 Specification experiment of the 100kW 3–FB \triangle –Y PV inverter

Parameters	3-FB △-Y PV inverter
Rated output power	100kWac
Turn ratio of a two-winding LV Tr.	310V : 380V
Turn ratio of a two-winding MV Tr.	380V : 22.9kV
Grid frequency	60Hz
LC filter	L_i 250µH, D-type $C_{f \bigtriangleup}$: 40µF Y-type $C_{f \updownarrow}$: 120µF
Switching frequency	3kHz
PV voltages	600V

전압은 시뮬레이션과 마찬가지로 -2V_{DV}로 매우 크다는 것을 알 수 있다.

한편, 그림 15는 PWM 동기화 후 PWM 전압 파형들 이며 그림 16에서와 같이 동기화를 하면 공통 모드 전 압의 크기는 현격하게 줄일 수 있다는 것을 볼 수 있다.

Fig. 18 Experiment result of the traditional 3-FB inverter topology - Voltage: 200V/div, 5ms/div, Current: 200mA/div, 5ms/div, Zoom: 100µs/div

Fig. 19 Experiment result of the 3-FB △-Y inverter topology - Voltage: 200V/div, 5ms/div, Current: 100mA/div, 5ms/div, Zoom: 100µs/div

두 번째 실험으로 그림 17은 개선된 멀티 센트럴 시 스템을 위한 100kW 3-FB △-Y 태양광 인버터 시작품 의 실험 구성도이다. 실험을 위한 시스템의 사양은 표 5 와 같다. 그리고 *L*C₀의 차단 주파수는 다음과 같다.

$$\frac{1}{2\pi\sqrt{L_f C_{fy}}} = 918.88 Hz \tag{8}$$

그림 18, 19는 이 시험 단지의 실험 결과 파형들을 보 여준다. 비록 제작 여건 및 시험 단지의 한계로 인하여 개선된 멀티 센트럴 시스템의 실험을 하지는 못하였지 만 3-FB △-Y 토폴로지를 가지고 기생 캐패시터로 인 한 공통 모드 전압 및 누설전류의 저감은 확실히 확인 할 수 있었다. 만약 1MW급에서 증명이 된 PWM동기화 와 함께 적용 한다면 복권변압기를 사용하는 멀티센트 럴 인버터의 구성도 아무런 문제가 없을 것이다.

6. 결 론

대용량 태양광 발전소의 효율 및 경제성을 고려한다 면 복권 중전압 변압기를 이용한 멀티 센트럴 방식이 유리하다. 하지만, 안정성의 측면에서 공통 모드 전압에 따른 누설 전류가 문제가 되며 이는 반드시 규정에 맞 게 줄여야 한다. 따라서 본 논문에서는 복권 변압기를 사용한 방식에서의 누설전류의 원인을 제시하는 공통 모드 등가 모델을 통해 이를 이론적으로 분석하였다. 또 한 공통 모드 전압을 효과적으로 줄일 수 있는 PWM 동기화 제어방법과 함께 개선된 멀티 센트럴 토폴로지 를 제시하여 기존 3-FB 토폴로지를 가지고 복권 변압 기를 연결하여 전체 시스템 효율을 높이는 방법을 제시 하였다.

마지막으로 PWM 동기화에 의한 공통 모드 전압을 줄이는 제어 방법은 중전압 계통에 병렬연결 된 350kW 급 인버터 3대를 이용하여 시뮬레이션과 함께 실험을 통해 검증하였다. 그리고 개선된 멀티 센트럴 태양광 시 스템은 100kW급 시작품의 실험을 통해 그 타당성을 검 증 하였다.

References

- World Wide Fund for Nature (WWF), ECOFYS and OMA, "The energy report: 100% renewable energy by 2050," *Gland, Switzerland*, Jan. 2011.
- [2] RENI, "Renewables insight energy industry guides," Solarpraxis, Berlin, 2011.
- [3] O. López, R. Teodorescu, F. Freijedo, J. Doval-Gandoy, "Leakage current evaluation of a single-phase transformerless PV inverter connected to the grid," in *Proc. IEEE of APEC'07*, pp. 907–912, 2007.
- [4] S.V. Araujo, P. Zacharias, R. Mallwitz, "Highly efficient

single-phase transformerless inverters for grid-connected photovoltaic systems," *IEEE Transactions on Industrial Electronics*, Vol. 57, No. 9, pp. 3118–3128, Sept. 2010.

- [5] O. Lopez, R. Teodorescu, F. Freijedo, J. Doval-Gandoy, "Eliminating ground current in a transformerless photovoltaic application," *IEEE Transactions on Energy Conversion*, Vol. 25, No. 1, pp. 140–147, Mar. 2010.
- [6] B. Yang, W. Li, Y. Gu, W. Cui, X. He, "Improved transformerless inverter with common-mode leakage current elimination for a photovoltaic grid-connected power system," *IEEE Transactions on Power Electronics*, Vol. 27, No. 2, pp. 752–762, Feb. 2012.
- [7] M. C. Cavalcanti, P. E. P. Ferraz, F. A. S. Neves, E. C. dos Santos, J. H. G. M. da Silva, "Modulation for three-phase transformerless z-source inverter to reduce leakage currents in photovoltaic systems," *IEEE Transactions on Industrial Electronics*, Vol. 58, No. 12, pp. 5385–5395, Dec. 2011.
- [8] X. Wang, F. Zhuo, J. Li, L. Wang, S. Ni, "Modeling and control of dual-stage high-power multifunctional PV system in d-q-o coordinate," *IEEE Transactions* on *Industrial Electronics*, Vol. 60, No. 4, pp. 1556–1570, Apr. 2013.
- [9] B. Gu, J. Dominic, J.-S. Lai, C.-L. Chen, T. LaBella, B. Chen, "High reliability and efficiency single-phase transformerless inverter for grid-connected photovoltaic systems," *IEEE Transactions on Power Electronics*, Vol. 28, No. 5, pp. 2235–2245, May 2013.
- [10] S. B. Kjaer, J. K. Pedersen, F. Blaabjerg, "A review of single-phase grid-connected inverters for photovoltaic modules," *IEEE Transactions on Industry Applications*, Vol. 41, No. 5, pp. 1292–1306, Sep. 2005.
- [11] J.-P. Lee, B.-D. Min, D.-W. Yoo, "Implementation of a High Efficiency Grid-Tied Multi-level Photovoltaic Power Conditioning System Using Phase Shifted H-Bridge Modules," *Journal of Power Electronics*, Vol. 13, No. 2, pp. 296–303, Mar. 2013.
- [12] T. Kerekes, R. Teodorescu, M. Liserre, "Common mode voltage in case of transformerless PV inverters connected to the grid," *IEEE International Symposium* on Industrial Electronics, pp. 2390–2395, Jun./July 2009.
- [13] R. González, E. Gubía, J. López, L. Marroyo, "Transformerless single-phase multilevel-based photovoltaic inverter," *IEEE Transactions on Industrial Electronics*, Vol. 55, No. 7, pp. 2694–2702, July 2008.
- [14] R. Araneo, S. Lammens, M. Grossi, S. Bertone, "EMC issues in high-power grid-connected photovoltaic plants," *IEEE Transactions on Electromagnetic Compatibility*, Vol. 51, No. 3, pp. 639–648, Aug. 2009.
- [15] DKE Deutsche Kommission Elektrotechnik Elektronik Informationstechnik im DIN und VDE, DIN VDE 0126-1-1, Paragraph 4.7.1. Photovoltaik, 2006.

- [16] T. Kerekes, R. Teodorescu, M. Liserre, "Evaluation of three-phase transformerless photovoltaic inverter topologies," *IEEE Transactions on Power Electronics*, Vol. 24, No. 9, pp. 2202–2211, Sep. 2009.
- [17] Texas Instruments, "TMS320x2834x Delfino Enhanced Controller Area Network (eCAN)," *reference guide*, Mar. 2009.
- [18] Texas Instruments, "TMS320x2834x Delfino Enhanced Pulse Width Modulator (ePWM) Module," *reference guide*, Sep. 2009.
- [19] H. Chen, J. Tian, "Research on the controller area network," *International Conference on Networking and Digital Society*, Vol. 2, pp. 251–254, May 2009.
- [20] Y. Wang, R. Li, "Novel high-efficiency three-level stacked-neutral-point-clamped grid-tied Inverter," *IEEE Transactions on Industrial Electronics*, Vol. 60, No. 9, pp. 3766–3774, Sep. 2013.
- [21] M. Cavalcanti, A. Farias, K. Oliveira, F. Neves, "Eliminating leakage currents in neutral point clamped inverters for photovoltaic systems," *IEEE Transactions on Industrial Electronics*, Vol. 59, No. 1, pp. 435–443, Jan. 2012.
- [22] H. W. Ping, N. A. Rahim, J. Jamaludin, "New Three-Phase Multilevel Inverter with Shared Power Switches," *Journal of Power Electronics*, Vol. 13, No. 5, pp. 787-797, Sep. 2013.

박사과정

배영상(裵永相)

1979년 11월 30일생. 2005년 서울과학기술대 대학원 제어계측공학과 졸업(석사). 2008년~ 2012년 카코 뉴에너지 연구소 선임연구원. 2012년~현재 데스틴 파워연구소 책임연구원. 2011년~현재 한양대 대학원 전기공학과

1/1-10.

<u>김래영(金來瑛)</u>

1974년 6월 6일생. 1977년 한양대 전기공학과 졸업. 1999년 동 대학원 전기공학과 졸업(석사). 2009년 미국 버지니아 공대(Virginia Tech) 대학원 전기공학과 졸업(공박). 1999년~2004년 효성중공업 연구소 선임연구원. 2009년~2010년

미국 National Semiconductor Post Doc. Researcher. 2010년~현재 한양대 전기생체공학부 조교수. 당 학회 JPE 편집위원, 학술위원.