• 제목/요약/키워드: Two shaft

검색결과 546건 처리시간 0.024초

축-이중 원판계의 진동해석 (Vibration Analysis of the Shaft-duplicate Disk System)

  • 전상복;이종원
    • 대한기계학회논문집A
    • /
    • 제21권6호
    • /
    • pp.896-906
    • /
    • 1997
  • The effect of duplicate flexible disks on the vibrational modes of a flexible rotor system is investigated by using an anlytical method based on the assumed modes method. The rotor model to be analyzed consists of duplicate disks on a flexible shaft. In modeling the system, centrifugal stiffening and disk flexibility effects are taken into account. To demonstrate the effectiveness of the method, a hard disk drive spindle system commonly used in personal computers and a simple flexible rotor system with two disks are selected as examples. In particular, the dynamic coupling between the vibrational modes of the shaft and the duplicate disks is investigated with the shaft rotational speed varied.

엔진진동 저감을 위한 밸런싱샤프트의 요소설계 기법 연구 (Element Design of Balancing Shaft for Reducing the Vibration in Engine Module)

  • 이봉현;김동철;정인오;김찬중
    • 한국소음진동공학회논문집
    • /
    • 제15권11호
    • /
    • pp.1268-1275
    • /
    • 2005
  • Vibration in Engine module could be reduced by introducing a balance shaft module which has one or more unbalanced rotors. Since the unbalanced rotor is installed in an opposite direction of the free force or unbalance moment by engine component, the unexpected vibration could be decreased kinematically. The essential equation of the unbalanced rotor was Presented for two cases, 3 in-line and 4 in-line cylinder engine type, And the efficiency of the balance shaft is investigated by the vehicle testing that is focused on measuring the reduced vibration level when adapting a balancing module. With the signal processing of measured signals, some important issues on design the balancing shaft could be derived and the overall design process is explained in the final part including the peripheral component, i.e. housing and bush.

스플라인-축 연결을 갖는 보조동력장치 가스터빈의 로터다이나믹 설계민감도 해석 (Rotordynamics Design Sensitivity Analysis of an APU Gas Turbine having a Spline Shaft Connection)

  • 이안성;하진웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.593-598
    • /
    • 2000
  • In this paper the critical speed analysis and design sensitivity investigation are carried out with an APU(auxiliary power unit) gas turbine having a spline shaft connection. The DDM(direct differential method) is directly applied to formulate the critical speed design sensitivity problem of a general nonsymmetric-matrix rotor-bearing system. The design sensitivity analysis have shown that the critical speed change rate to the support modeling of the spline shaft connection point is extremely negligible, and thereby its design uncertainty is lifted. It has also been confirmed that the critical speeds up to the 4th are not sensitive to the design stiffness coefficients of 4-main bearings or supports, including two air foil bearings. Further, the critical speed change rate to the shaft-element length have shown quantitatively that the spline shaft has some limited influence on the 4th critical speed.

  • PDF

비틀림 진동특성을 고려한 서어보모터계의 디지털 최적제어 (Digital Optimal Contorl of Servomotor System Considering Torsional Vibration Characteristics)

  • 조승호
    • 한국정밀공학회지
    • /
    • 제6권4호
    • /
    • pp.52-60
    • /
    • 1989
  • In order to control the transient torsional vibration of rotational shaft system, the torsional stiffness of it has been taken into account in modelling the plant. In this paper the observer and controller has been designed in two ways. One is to consider the torsional stiffness and the other is to idealize the rotational shaft as rigid body. The third order observer considering torsional stiffness shows stable response on computer simulation. When the observer is designed on assumption of the rotational shaft being rigid body, the reduced order observer shows stable response whereas the full order observer shows unstable response.

  • PDF

정압베어링을 적용한 터보팽창기의 회전체 동역학 해석 및 구동시험 (Rotordynamic Analysis and Operation Test of Turbo Expander with Hydrostatic Bearing)

  • 이동현;김병옥;정준하;임형수
    • Tribology and Lubricants
    • /
    • 제38권2호
    • /
    • pp.33-40
    • /
    • 2022
  • In this study, we present rotor dynamic analysis and operation test of a turbo expander for a hydrogen liquefaction plant. The turbo expander consists of a turbine and compressor wheel connected to a shaft supported by two hydrostatic radial and thrust bearings. In rotor dynamic analysis, the shaft is modeled as a rigid body, and the equations of motion for the shaft are solved using the unsteady Reynolds equation. Additionally, the operating test of the turbo expander has been performed in the test rig. Pressurized helium is supplied to the bearings at 8.5 bar. Furthermore, we monitor the shaft vibration and flow rate of the helium supplied to the bearings. The rotor dynamic analysis result shows that there are two critical speeds related with the rigid body mode under 40,000 rpm. At the first critical speed of 36,000 rpm, the vibration at the compressor side is maximum, whereas that of the turbine is maximum at the second critical speed of 40,000 rpm. The predicted maximum shaft vibration is 3 ㎛, whereas sub-synchronous vibration is not presented. The operation test results show that there are two critical speeds under the rated speed, and the measured vibration value agrees well with predicted value. The measured flow rate of the helium supplied to the bearing is 2.0 g/s, which also agrees well with the predicted data.

직렬 4기통 엔진용 밸런스 샤프트의 베어링 및 불평형 질량 위치 결정 문제 (Location Issue of Bearing and Unbalance Mass on the Balance Shaft for a Inline 4-Cylinder Engine)

  • 배철용;김찬중;이동원;권성진;이봉현
    • 한국소음진동공학회논문집
    • /
    • 제18권3호
    • /
    • pp.277-283
    • /
    • 2008
  • Balance shaft module contributes to reduce the engine-born vibration by compensating it from a unbalance mass with opposite phase but practically, this device has some problems during the operation in a high speed owing to the considerable amount of unbalance mass that leads to the large quantity of bending deformation as well as torque fluctuation at the balance shaft. To tackle two main problems, the design strategy on balance shaft is suggested by addressing the optimal location of unbalance mass and supporting hearing based on the formulation of objective function that minimizes critical issues, both bending deformation as well as torque fluctuation. The boundary condition of balance shaft assumes to be free such that any external force or contact component is not taken into consideration in this study.

밸런스샤프트의 회전체역학 해석 (Rotordynamic Analysis of Balance Shafts)

  • 노종원;신범식;박흥준;최연선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.531-536
    • /
    • 2006
  • In four cylinder engine, the second order inertia force occurs due to the reciprocating parts of the cylinder. Because the magnitude of the inertia force is proportional to a square of the angular velocity of crank shaft, engine gets suffered from vibration excited by unbalanced inertia force in high speed. This vibration excited by the unbalanced inertia force can be canceled by applying a balance shaft. Balance shaft has one or more unbalance mass and rotates twice quickly than the crank shaft. In this paper, an unbalanced force caused by the rotating of unbalance mass of balance shafts was calculated. The directional equivalent stiffness and damping coefficients of the journal bearing of balance shafts was calculated. Equations of rotational vibration modes were derived using directional stiffness and damping coefficients. The dynamic stability of balance shafts was analyzed and evaluated for two type models using the equivalent stiffness and damping coefficients. An efficient procedure to he able to evaluate dynamic stability and design optimal balance shaft was proposed.

  • PDF

Improvement of tip analysis model for drilled shafts in cohesionless soils

  • Chen, Yit-Jin;Wu, Hao-Wei;Marcos, Maria Cecilia M.;Lin, Shiu-Shin
    • Geomechanics and Engineering
    • /
    • 제5권5호
    • /
    • pp.447-462
    • /
    • 2013
  • An analysis model for predicting the tip bearing capacity of drilled shafts in cohesionless soils is improved in this study. The evaluation is based on large amounts of drilled shaft load test data. Assessment on the analysis model reveals a greater variation in two coefficients, namely, the overburden bearing capacity factor ($N_q$) and the bearing capacity modifier for soil rigidity (${\zeta}_{qr}$). These factors are modified from the back analysis of drilled shaft load test results. Different effective shaft depths and interpreted capacities at various loading stages (i.e., low, middle, and high) are adopted for the back calculation. Results show that the modified bearing capacity coefficients maintain their basic relationship with soil effective friction angle ($\bar{\phi}$), in which the $N_q$ increases and ${\zeta}_{qr}$ decreases as $\bar{\phi}$ increases. The suggested effective shaft depth is limited to 15B (B = shaft diameter) for the evaluation of effective overburden pressure. Specific design recommendations for the tip bearing capacity analysis of drilled shafts in cohesionless soils are given for engineering practice.

콘관입시험자료를 기초로 한 PC말뚝의 주면마찰력 예측 (Predictions of PC Pile Shaft Resistance by CPT Data)

  • 윤길림;이영남
    • 한국지반공학회지:지반
    • /
    • 제14권1호
    • /
    • pp.71-80
    • /
    • 1998
  • 서해안에 위치한 서산지역에서 연구용 prestressed concrete 말뚝을 3본을 설치하고 주변에서 콘관입시험을 수행하여 말뚝의 주면마찰력을 추정하는 연구를 수행했다. 본 연구에서 이용한 말뚝 지지력 산정식은 세계적으로 많이 이용하고 있는 Schmertmann방법, Tumay & Fakroo방법 및 프랑스의 LCPC방법을 이용하였다. 콘관입시험의 측정결과를 이용하여 3가지 방법으로 예측한 말뚝 의 주면마찰력과 현장에서 수행한 정역학적 재하시험 및 동재하시험에서 산정된 주면마찰력과의 비교하여 3가지 예측방법들에 대한 신뢰성을 평가했다. CPT를 이용한 3가지 예측식으로 산정한 말뚝의 주면마찰력은 전체적으로 25일과 42일이 지난후 수행한 정재하시험에 의한 주면마찰력을 상당히 과소평가했으나, 항타시좌 말뚝설치후 2주가 지난 시점에 수행한 동재하시험결과와는 유사한 말뚝의 주면마찰력을 예측했다.

  • PDF

저속 2행정 디젤엔진의 과도 비틀림 진동에 의한 축계 피로 강도에 관한 연구 (A Study on Shaft Fatigue Strength due to Torsional Vibrations in Two Stroke Low Speed Diesel Engines)

  • 이돈출;김상환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.786-791
    • /
    • 2006
  • Two stroke low speed diesel engines are mainly used for marine propulsion or power plant prime mover. These have many merits such as higher thermal efficiency, mobility and durability. However various annoying vibrations sometimes occur in ships or at the plant itself. Of these vibrations, torsional vibration is very important and it should be carefully investigated during the initial design stage for engine's safe operation. In this paper authors suggest a new estimation method of for shaft's can be calculated equivalently from accumulated fatigue cycles number due to torsional vibration. The 6S70MC-C($25,320ps{\times}91rpm$) engine for ship propulsion was selected as a case study, and the accumulated fatigue cycles numbers for shafting life time converted from the measured angular velocity and torsional vibration stress was calculated. This new method can be realized and confirmed in test model ship with two stroke low speed diesel engine.

  • PDF