• Title/Summary/Keyword: Twin-scale

Search Result 69, Processing Time 0.066 seconds

Prototyping-based Design Process Integrated with Digital-Twin: A Fundamental Study (디지털 트윈 개념을 적용한 프로토타이핑 기반 디자인 프로세스: 기초연구)

  • Kim, Jin-Wooung;Kim, Sung-Ah
    • Journal of KIBIM
    • /
    • v.9 no.4
    • /
    • pp.51-61
    • /
    • 2019
  • In the general manufacturing sector, prototyping used to reduce the risks that can arise with new conceptual products. However, in AEC area, it does not mass-produce a building, so the prototype itself becomes a building. Therefore, it is challenging to have prototyping of the same scale as the real thing, and the prototyping process in architecture is very inefficient. The prototyping process in the design stage typically assumes making a scaled model, partial model, or digital model. However, it is difficult for these models to correspond to the actual building and the environment of time and space such as scale, material, environment, load, physical properties and deformation, corrosion, etc., unlike the actual building. When using the digital twin concept in the prototyping process, it is possible to measure performance from the design stage to the operation stage. The digital twin was found by a method for monitoring based on physical twins and real-time linkage in the operation stage. Therefore, if the digital twin concept is applied at the design stage, it is possible to predict performance using not only current performance but also history information using real-time information. In order to apply the digital twin concept to the prototyping design process, we analyze the theoretical considerations and the prototyping design process of the digital twin, analyze the cases and research results where the prototyping design was applied, Provide an applied prototyping design process. The proposed process is tested through a pilot project and analyzed for potential use.

A Study on the Model Test for the Twin Propeller Cavitation Noise (쌍축선 추진기 캐비테이션 소음 모형시험 연구)

  • Park, Cheolsoo;Kim, Gun-Do;Yim, Geun-Tae;Park, Young-Ha;Jang, Hyun-Gil;Jang, Young Hun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.1
    • /
    • pp.28-36
    • /
    • 2018
  • The experimental results of the model tests for the twin propeller cavitation noise are presented. The model test was carried out by means of procedure of noise measurement followed by the signal processing and full-scale extrapolation. In order to convert the measured sound pressure level into the sound source level, transfer function measurements for three conditions were performed according to the combination of locations and number of virtual sources. White noise and LFM signal were used as a source signals to examine the influence of the input signal. For the twin propellers, 5 transfer functions were defined and the results were discussed. Cavitation noise measurement tests were performed similarly to the transfer function measurement test. Noise source localization analysis was performed to confirm the test effectiveness. It was confirmed that the source level of the twin propeller can be estimated reliably by using transfer function corrections. Finally, the model test results were converted into full-scale by applying the ITTC '87 model-ship scaling raw, and the validity of the model test was confirmed by comparison with the full-scale measurement result.

Evaluation on Tunnel in Uncontinuous Rock Mass by Small-Scale Model Tests (축소모형실험에 의한 불연속면 암반에서의 병설터널 적용성 평가)

  • Kim, Hong-Taek;Yoo, Chan-Ho;Hwang, Jung-Soon;Yoon, Hyun-Don
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.181-188
    • /
    • 2008
  • In this study, estimation of behavioral characteristics between twin tunnels was performed through the series of laboratory experiment on the small scale tunnel model. In the model test, the experimental parameters were geological conditions, center to center distance between twin tunnels, application of discontinuous inclination. To estimated behavior of pillar and load-displacement relationship by model tests and numerical analyses.

  • PDF

Effects of Growth Regulators and Sucrose Concentrations on the Bulblet Formation through In Vitro Culture of Scale Segment in Nerine bowdenii (네리네(Nerine bowdenii)의 기내 인편배양시 자구형성에 미치는 생장조절제와 Sucrose 농도의 영향)

  • Lee, Seung-Yeob;Ahn, Jeong-Ho;Park, Yun-Jum
    • Journal of Plant Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.139-143
    • /
    • 2004
  • The twin-scale segments of nerine (Nerine bowdenii) were cultured to investigate the influence of NAA, BA and sucrose concentrations on in vitro bulblet formation. The formation of bulblets from twin-scale segments showed a good response both the percentage of bulblet formation and the number of bulblets per explant on MS medium supplemented with 1mg/L NAA and 2 mg/L BA. Formation of bulblet showed the highest efficiency on medium containing 30g/L, and the formation of bulblets was strongly inhibited on medium containing over 90g/L. When the twin-scale segments formed bulblets were subcultured three times to the same medium by 60 day subculture interval, the number of bulblets per explant was 6.5, 7.3 and 8.2 in order of first, second and third. The bulblets over 3mm in diameter were hypertrophied and rooted after transferring to the hormone-free MS medium. The plantlets over 50mm in height were successfully acclimatized in the soil mixed with the same volume of vermiculite and perlite, and the survival rate was over 95%.

Water Digital Twin for High-tech Electronics Industrial Wastewater Treatment System (II): e-ASM Calibration, Effluent Prediction, Process selection, and Design (첨단 전자산업 폐수처리시설의 Water Digital Twin(II): e-ASM 모델 보정, 수질 예측, 공정 선택과 설계)

  • Heo, SungKu;Jeong, Chanhyeok;Lee, Nahui;Shim, Yerim;Woo, TaeYong;Kim, JeongIn;Yoo, ChangKyoo
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.79-93
    • /
    • 2022
  • In this study, an electronics industrial wastewater activated sludge model (e-ASM) to be used as a Water Digital Twin was calibrated based on real high-tech electronics industrial wastewater treatment measurements from lab-scale and pilot-scale reactors, and examined for its treatment performance, effluent quality prediction, and optimal process selection. For specialized modeling of a high-tech electronics industrial wastewater treatment system, the kinetic parameters of the e-ASM were identified by a sensitivity analysis and calibrated by the multiple response surface method (MRS). The calibrated e-ASM showed a high compatibility of more than 90% with the experimental data from the lab-scale and pilot-scale processes. Four electronics industrial wastewater treatment processes-MLE, A2/O, 4-stage MLE-MBR, and Bardenpo-MBR-were implemented with the proposed Water Digital Twin to compare their removal efficiencies according to various electronics industrial wastewater characteristics. Bardenpo-MBR stably removed more than 90% of the chemical oxygen demand (COD) and showed the highest nitrogen removal efficiency. Furthermore, a high concentration of 1,800 mg L-1 T MAH influent could be 98% removed when the HRT of the Bardenpho-MBR process was more than 3 days. Hence, it is expected that the e-ASM in this study can be used as a Water Digital Twin platform with high compatibility in a variety of situations, including plant optimization, Water AI, and the selection of best available technology (BAT) for a sustainable high-tech electronics industry.

Optimization of a twin-skeg container vessel by parametric design and CFD simulations

  • Chen, Jingpu;Wei, Jinfang;Jiang, Wujie
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.5
    • /
    • pp.466-474
    • /
    • 2016
  • The model tests results for the original lines of an 10000TEU container vessel show that the delivered power is higher and could not satisfy the requirement of energy saving effects and design targets. In this paper, the lines optimization of the 10,000 twin-skeg container vessel was carried out by parametric modeling and CFD simulations. At first, the CFD methods for twin-skeg hull form were validated by the comparison with the experimental results. Then more than one hundred parameters were adopted for the establishment of the fully parametric model. Based on the parametric model of the twin-skeg container vessel, the preliminary optimization was carried out by tight coupling of FRIENDSHIP-FRAMEWORK with potential flow of SHIPFLOW. Then several important parameters related to the after part of twin-skeg vessel were investigated by viscous flow computation. The final optimized variant PM11, which the total resistance was reduced by about 8.3% in model scale, is obtained within the constraints of general arrangement. And the model tests for variant PM11 was carried out in CSSRC, which shows that the resistance of optimized variant PM11 is decreased by about 8.6%.

Effect of Pouring Temperature on the Casting Characteristics and Microstructure of Twin-roll Cast BCuP Alloy (BCuP계 합금의 쌍롤주조시 주조특성과 미세조직에 미치는 주입온도의 영향)

  • Joo, Dae-Heon;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.21 no.4
    • /
    • pp.232-238
    • /
    • 2001
  • Experimental study on the twin roll strip casting of BCuP-5(Cu-15wt%Ag-wt5%P) alloy was carried out using laboratory scale horizontal type twin roll caster. In this study, among the various operating parameters, such as tundish angle, contact angle, pouring temperature, roll speed, presetting gap of the rolls and kinds of roll and tundish materials, effect of pouring temperature for strip casting of BCuP-5 alloy which has long freezing range of about $170^{\circ}C$ was mainly investigated. BCuP-5 alloy strip was successfully produced when pouring molten metal at lower temperature than its liquidus temperature. Microstructure of the cast strip consists of primary Cu and eutectic. Especially the size of primary Cu phase increased with decreasing of pouring temperature.

  • PDF

Study of Implementation as Digital Twin Framework for Vertical Smart Farm (식물공장 적용 디지털 트윈 프레임워크 설계 연구)

  • Ko, Tae Hwan;Noe, Seok Bong;Noh, Dong Hee;Choi, Ju Hwan;Lim, Tae Beom
    • Journal of Broadcast Engineering
    • /
    • v.26 no.4
    • /
    • pp.377-389
    • /
    • 2021
  • This paper presents a framework design of a digital twin system for a vertical smart farm. In this paper, a framework of digital twin systems establishes three factors: 1) Client 2) IoT gateway, and 3) Server. Especially, IoT gateway was developed using the Eclipse Ditto, which has been commonly used as the standard open hardware platform for digital twin. In particular, each factor is communicating with the client, IoT gateway, and server by defining the message sequence such as initialization and data transmission. In this paper, we describe the digital twin technology trend and major platform. The proposed design has been tested in a testbed of the lab-scale vertical smart-farm. The sensor data is received from 1 Jan to 31 Dec 2020. In this paper, a prototype digital twin system that collects environment and control data through a raspberry pi in a plant factory and visualizes it in a virtual environment was developed.

Pillar Width of Twin Tunnels in Horizontal Jointed Rock Using Large Scale Model Tests (대형모형실험을 통한 수평 절리암반에서의 병설터널 이격거리)

  • Lee, Yong-Jun;Lee, Sang-Duk
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.352-359
    • /
    • 2010
  • Stability of twin tunnels depends on the pillar width and the ground condition. In this study, large scale model tests were conducted for investigating the influence of the pillar width of twin tunnels on their behavior in the regular horizontal jointed rock mass. Jointed rocks was composed of concrete blocks. Pillar width of twin tunnels varied in 0.29D, 0.59D, 0.88D and 1.18D, where D is the tunnel width. During the test, pillar stress, lining stress, tunnel distortion, and ground displacement were measured. Lateral earth pressure coefficient was kept in a constant value 1.0. As a result, it was found that the pillar stress and the displacement of the ground and tunnel were increased by decreasing pillar width. The maximum displacement rate was measured just after the upper excavation in each construction sequence. And the maximum influence position was the right shoulder of the preceeding tunnel at the pillar side. It was also found that for the stability assessment the inner displacement was more critical than the crown displacement. The influence zone was formed at the pillar width 0.59D~0.88D that was smaller than 0.8D~2.0D, which was proposed by experience for a good ground condition. And it would be concluded that horizontal joints could also influence on the stability of the twin tunnels.

The Sensitivity Analysis on Failure Parameter of Adjacent Twin Tunnel Using Model Tests (근접 병설터널 모형실험을 통한 붕괴인자 민감도 분석)

  • Han, Yeon-Jin;Shim, Seung-Bo;Choi, Yong-Kyu;Kim, Gun-Ho;Chang, Ock-Sung;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.585-594
    • /
    • 2009
  • In this present study, to performed the model test and estimated the behavior characteristics of twin tunnel in accordance with the variation of the whole failure parameters which is the strength of the ground, distance of tunnel, angle of the joint, installation of tension bolts and the blasting load. To carry out the numerical analysis for verification of model test results and analyze the sensitivity on failure parameters using model test and numerical analysis results. Based on sensitivity analysis results, to propose the most habitually failure parameters in tunnel scale model test.

  • PDF