• Title/Summary/Keyword: Turbulent Energy

Search Result 768, Processing Time 0.028 seconds

Prediction of Turbulent Premixed Flamefield in Bunsen Burner (Bunsen Buner 난류 예혼합 화염장의 해석)

  • Cho, Ji-Ho;Kim, Hoo-Joong;Kim, Yong-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.195-199
    • /
    • 2003
  • The stoichiometric methan/air premixed turbulent flames at the axisymmetric Bunsen burner situation are numerically investigated. To account for the chemistry-turbulence interaction in the turbulent premixed flames, the steady laminar flamelet library method has been adopted. The flame front is tracked by using the Level-Set Approach. Turbulence is represented by the ${\kappa}-{\varepsilon}$ modeling with a Pope's correction. The detailed comparison between prediction and measurement has made for the flame field in terms of velocity, turbulent kinetic energy, and normarlized temperature.

  • PDF

Study on the Relationship Between Turbulent Normal Stresses in the Fully Developed Bare Rod Bundle Flow (완전히 발달된 맨봉주위의 난류유동장에서 난류 응력사이의 상관 관계에 대한 연구)

  • Lee, Kye-Bock;Lee, Byung-Jin
    • Nuclear Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.888-893
    • /
    • 1995
  • The turbulence structure for fully developed flow through the subchannels formed by the bare rod array depends on the pitch to rod diameter ratio. For fairly open spaced bare rod arrays, the distributions of the three components of the turbulent normal stresses are similar to those measured in circular pipe. However, for more closely spaced arrays, the turbulence structure, especially in the gap region, depart markedly from the pipe flow distribution. A linear relationship between turbulent normal stresses and turbulent kinetic energy for fully developed turbulent flow through regularly spaced bare rod arrays has been developed. This correlation can be used in connection with various theoretical analyses applied in turbulence research.

  • PDF

Thermal-hydraulic research on rod bundle in the LBE fast reactor with grid spacer

  • Liu, Jie;Song, Ping;Zhang, Dalin;Wang, Shibao;Lin, Chao;Liu, Yapeng;Zhou, Lei;Wang, Chenglong;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2728-2735
    • /
    • 2022
  • The research on the flow and heat transfer characteristics of lead bismuth(LBE) is significant for the thermal-hydraulic calculation, safety analysis and practical application of lead-based fast reactors(LFR). In this paper, a new CFD model is proposed to solve the thermal-hydraulic analysis of LBE. The model includes two parts: turbulent model and turbulent Prandtl, which are the important factors for LBE. In order to find the best model, the experiment data and design of 19-pin hexagonal rod bundle with spacer grid, undertaken at the Karlsruhe Liquid Metal Laboratory (KALLA) are used for CFD calculation. Furthermore, the turbulent model includes SST k - 𝜔 and k - 𝜀; the turbulent Prandtl includes Cheng-Tak and constant (Prt =1.5,2.0,2.5,3.0). Among them, the combination between SST k - 𝜔 and Cheng-Tak is more suitable for the experiment. But in the low Pe region, the deviation between the experiment data and CFD result is too much. The reason may be the inlet-effect and when Pe is in a low level, the number of molecular thermal diffusion occupies an absolute advantage, and the buoyancy will enhance. In order to test and verify versatility of the model, the NCCL performed by the Nuclear Thermal-hydraulic Laboratory (Nuthel) of Xi'an Jiao tong University is used for CFD to calculate. This paper provides two verification examples for the new universal model.

A Study on the Development of Low Reynolds Number k-$\varepsilon$ Turbulence Model (저레이놀즈수 k-$\varepsilon$난류모형 개선에 관한 연구)

  • 김명호;신종근;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1940-1954
    • /
    • 1992
  • Fine grid computations were attempted to analyze the turbulent flows in the near wall low Reynolds number region and the numerical analyses were incorporated by a finite-volume discretization with full find grid system and low Reynolds number k-.epsilon. model was employed in this region. For the improvement of low Reynolds number k-.epsilon. model, modification coefficient of eddy viscosity $f_{\mu}$ was derived as a function of turbulent Reynolds number $R_{+}$ and nondimensional length $y^{+}$ from the concept of two length scales of dissipation rate of turbulent kinetic energy. The modification coefficient $f_{\epsilon}$ in .epsilon. transport equation was also derived theoretically. In the turbulent kinetic energy equation, pressure diffusion term was added in order to consider low Reynolds number region effect. The main characteristics of this low Reynolds number k-.epsilon. model were founded as : (1) In high Reynolds number region, the present model has limiting behavior which approaches to the high Reynolds number model. (2) Present low Reynolds number k-.epsilon. model dose not need additional empirical constants for the transport equations of turbulent kinetic energy and dissipation of turbulent kinetic energy in order to consider wall effect. Present low Reynolds number turbulence model was tested in the pipe flow and obtained improved results in velocity profiles and Reynolds stress distributions compared with those from other k-.epsilon. models.s.s.

COMPUTATION OF TURBULENT NATURAL CONVECTION WITH THE ELLIPTIC-BLENDING SECOND-MOMENT CLOSURE (타원혼합 이차모멘트 모델을 사용한 난류 자연대류 해석)

  • Choi, S.K.;Han, J.W.;Kim, S.O.;Lee, T.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.102-111
    • /
    • 2016
  • In this paper a computation of turbulent natural convection in enclosures with the elliptic-blending based differential and algebraic flux models is presented. The primary emphasis of the study is placed on an investigation of accuracy of the treatment of turbulent heat fluxes with the elliptic-blending second-moment closure for the turbulent natural convection flows. The turbulent heat fluxes in this study are treated by the elliptic-blending based algebraic and differential flux models. The previous turbulence model constants are adjusted to produce accurate solutions. The proposed models are applied to the prediction of turbulent natural convections in a 1:5 rectangular cavity and in a square cavity with conducting top and bottom walls, which are commonly used for validation of the turbulence models. The relative performance between the algebraic and differential flux model is examined through comparing with experimental data. It is shown that both the elliptic-blending based models predict well the mean velocity and temperature, thereby the wall shear stress and Nusselt number. It is also shown that the elliptic-blending based algebraic flux model produces solutions which are as accurate as those by the differential flux model.

Computation of a Turbulent Natural Convection in a Rectangular Cavity with the Low-Reynolds-Number Differential Stress and Flux Model

  • Choi, Seok-Ki;Kim, Eui-Kwang;Wi, Myung-Hwan;Kim, Seong-O
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1782-1798
    • /
    • 2004
  • A numerical study of a natural convection in a rectangular cavity with the low-Reynolds-number differential stress and flux model is presented. The primary emphasis of the study is placed on the investigation of the accuracy and numerical stability of the low-Reynolds-number differential stress and flux model for a natural convection problem. The turbulence model considered in the study is that developed by Peeters and Henkes (1992) and further refined by Dol and Hanjalic (2001), and this model is applied to the prediction of a natural convection in a rectangular cavity together with the two-layer model, the shear stress transport model and the time-scale bound ν$^2$- f model, all with an algebraic heat flux model. The computed results are compared with the experimental data commonly used for the validation of the turbulence models. It is shown that the low-Reynolds-number differential stress and flux model predicts well the mean velocity and temperature, the vertical velocity fluctuation, the Reynolds shear stress, the horizontal turbulent heat flux, the local Nusselt number and the wall shear stress, but slightly under-predicts the vertical turbulent heat flux. The performance of the ν$^2$- f model is comparable to that of the low-Reynolds-number differential stress and flux model except for the over-prediction of the horizontal turbulent heat flux. The two-layer model predicts poorly the mean vertical velocity component and under-predicts the wall shear stress and the local Nusselt number. The shear stress transport model predicts well the mean velocity, but the general performance of the shear stress transport model is nearly the same as that of the two-layer model, under-predicting the local Nusselt number and the turbulent quantities.

Readeveloping Turbulent Boundary Layer after Separation-Reattachment(I) (박리-재부착 이후의 재발달 난류경계층 I)

  • 백세진;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.780-788
    • /
    • 1989
  • An experimental study has been performed to investigate the process from nonequilibrium state to equilibrium state in redeveloping turbulent boundary layer beyond separation-reattachment using pitot tube and hot-wire anemometer. The model sued in the experiment has the form of a backward facing step which is assembled by a two-dimensional 4:1 half elipse and a plate. Measurements are carried out up to a distance of about 50 step height downstream of the step, where the reattachment observed at about x/h=6.5. The profiles of the shape factor H the Clauser parameter G and the coefficient of friction $C^{f}$ exhibited the characteristics similar to those of the equilibrium turbulent boundary layer from x/h=25, and the profiles of the trubulent quantities did from x/h=35. However, the wake region of the boundary layer does not seem to recover the equilibrium turbulent boundary layer even at x/h=50. By considering the distributions of the intermittency factor it has been noted that the turbulence structure changes gradually from a mixing layer to a turbulent boundary layer along downstream direction after reattachment. This becomes clearer as we analyse the one-dimensional energy spectra and the dissipation energy spectra which are measured and caculated at various downstream positions after the backward facing step.p.

Numerical Prediction of Turbulent Heat Transfer to Low Prandtl Bumber fluid Flow through Rod Bundles

  • Chung, Bum-Jin;Kim, Sin
    • Journal of Energy Engineering
    • /
    • v.7 no.2
    • /
    • pp.187-193
    • /
    • 1998
  • The turbulent heat transfer to low Prandtl number fluid flow through rod bundles is analyzed using k-$\varepsilon$ two-equation model. For the prediction of the turbulent flow field, an anisotropic eddy viscosity model is used. In the analysis of the temperature field, the effects of various parameters such as geometry, Reynolds and Prandtl numbers are considered. The calculation in made for Prandtl numbers from 0.001 to 0.1 in order to analyze the heat transfer to low Prandtl number fluid such as liquid metals. The numerical results show that for small P/D (Pitch/Diameter) geometries low Prandtl number makes severe changes of the rod surface temperature.

  • PDF

Maximum drag reduction in turbulent channel flow by polymer additives (난류 채널 유동에서 폴리머 첨가제에 의한 최대 항력감소)

  • Min Taegee;Choi Haecheon;Yoo Jung Yul
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.475-478
    • /
    • 2002
  • Maximum drag reduction (MDR) in turbulent channel flow by polymer additives is studied by direct numerical simulation. An Oldroyd-B model is adopted to express the polymer stress because it is believed that MDR is closely related to the elasticity of the polymeric liquids. The Reynolds number based on the bulk velocity and the channel height is 40000. MDR in the present study is $44{\%}$ and this is in a good agreement with the Virk's asymptote. Turbulence statistics are also in good agreements with the experimental observation. In the 'large drag reduction', the decrease of turbulent kinetic energy is compensated by the increase of energy transfer from the polymer to the flow. Therefore, MDR is a dynamic equilibrium state of the energy transfer between the polymer and the flow.

  • PDF

Numerical Analysis of the Turbulent Flow and Heat Transfer in a Heated Rod Bundle

  • In Wang-Kee;Shin Chang-Hwan;Oh Dong-Seok;Chun Tae-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.153-164
    • /
    • 2004
  • A computational fluid dynamics (CFD) analysis has been performed to investigate the turbulent flow and heat transfer in a triangular rod bundle with pitch-to-diameter ratios (P/D) of 1.06 and 1.12. Anisotropic turbulence models predicted the turbulence-driven secondary flow in a triangular subchannel and the distributions of the time mean velocity and temperature, showing a significantly improved agreement with the measurements from the linear standard $k-{\epsilon}$ model. The anisotropic turbulence models predicted the turbulence structure for a rod bundle with a large P/D fairly well, but could not predict the very high turbulent intensity of the azimuthal velocity observed in the narrow flow region (gap) for a rod bundle with a small P/D.