Computation of a Turbulent Natural Convection in a Rectangular Cavity with the Low-Reynolds-Number Differential Stress and Flux Model

  • Choi, Seok-Ki (Korea Atomic Energy Research Institute, Fluid System Engineering Division) ;
  • Kim, Eui-Kwang (Korea Atomic Energy Research Institute, Fluid System Engineering Division) ;
  • Wi, Myung-Hwan (Korea Atomic Energy Research Institute, Fluid System Engineering Division) ;
  • Kim, Seong-O (Korea Atomic Energy Research Institute, Fluid System Engineering Division)
  • Published : 2004.10.01

Abstract

A numerical study of a natural convection in a rectangular cavity with the low-Reynolds-number differential stress and flux model is presented. The primary emphasis of the study is placed on the investigation of the accuracy and numerical stability of the low-Reynolds-number differential stress and flux model for a natural convection problem. The turbulence model considered in the study is that developed by Peeters and Henkes (1992) and further refined by Dol and Hanjalic (2001), and this model is applied to the prediction of a natural convection in a rectangular cavity together with the two-layer model, the shear stress transport model and the time-scale bound ν$^2$- f model, all with an algebraic heat flux model. The computed results are compared with the experimental data commonly used for the validation of the turbulence models. It is shown that the low-Reynolds-number differential stress and flux model predicts well the mean velocity and temperature, the vertical velocity fluctuation, the Reynolds shear stress, the horizontal turbulent heat flux, the local Nusselt number and the wall shear stress, but slightly under-predicts the vertical turbulent heat flux. The performance of the ν$^2$- f model is comparable to that of the low-Reynolds-number differential stress and flux model except for the over-prediction of the horizontal turbulent heat flux. The two-layer model predicts poorly the mean vertical velocity component and under-predicts the wall shear stress and the local Nusselt number. The shear stress transport model predicts well the mean velocity, but the general performance of the shear stress transport model is nearly the same as that of the two-layer model, under-predicting the local Nusselt number and the turbulent quantities.

Keywords

References

  1. Ampofo, F. and Karayiannis, T. G., 2003, 'Experimental Benchmark Data for Turbulent Natural Convection in an Air Filled Square Cavity,' Int. J. Heat Mass Transfer, Vol. 46, pp. 3551-3572 https://doi.org/10.1016/S0017-9310(03)00147-9
  2. Betts, P. L. and Bokhari, I. H., 2000, 'Experiments on Turbulent Natural Convection in an Enclosed Tall Cavity,' Int. J. Heat Fluid Flow, Vol. 21, pp. 675-683 https://doi.org/10.1016/S0142-727X(00)00033-3
  3. Boudjemadi, R., Maupu, V., Laurence, D., Quere and P. Le., 1997, 'Budgets of Turbulent Stresses and Fluxes in a Vertical Slot Natural Convection Flow at Rayleigh Ra=$10^5$ and $5.4{\times}10^5$,' Int. J. Heat Fluid Flow, Vol. 18, pp. 70-79 https://doi.org/10.1016/S0142-727X(96)00144-0
  4. Cheesewright, R., King, K. J. and Ziai, S., 1986, 'Experimental Data for the Validation of Computer Codes for the Prediction of Two-Dimensional Buoyant Cavity Flows,' Proceeding of ASME Meeting, HTD, Vol. 60, pp. 75-81
  5. Chen, H. C. and Patel, V. C., 1988, 'Near-Wall Turbulence Models for Complex Flows Including Separation,' AIAA J., Vol. 26, pp. 641-648 https://doi.org/10.2514/3.9948
  6. Choi, S. K.. 2003. 'Evaluation of Turbulence Models for Natural Convection,' KAERI Internal Report, FS200-AR-01-R0-03, (in Korean)
  7. Choi, S. K., Kim, E. K. and Kim, S. O., 2004, 'Computation of Turbulent Natural Convection in a Rectangular Cavity with the ${\kappa}-{\varepsilon}-{\nu}^2-f$ Model,' Numer. Heat Transfer, Part B, Vol. 45, pp. 159-179 https://doi.org/10.1080/1040779049025391
  8. Davidson, L. 1990, 'Calculation of the Turbulent Buoyancy-Driven Flow in a Rectangular Cavity Using an Efficient Solver and Two Different Low Reynolds Number ${\kappa}-{\varepsilon}$ Turbulence Model,' Numer. Heat Transfer, Part A, Vol. 18, pp. 129-147
  9. Dol, H. S. and Hanjalic, K., 2001, 'Computational Study of Turbulent Natural Convection in a Side-Heated Near-Cubic Cnclosure at a High Rayleigh Number,' Int. J. Heat Mass Transfer, Vol. 44, pp. 2323-2344 https://doi.org/10.1016/S0017-9310(00)00271-4
  10. Dol, H. S., Hanjalic, K. and Kenjeres, S., 1997, 'A Comparative Assessment of the Second-Moment Differential and Algebraic Models in Turbulent Natural Convection,' Int. J. Heat Fluid Flow, Vol. 18, pp. 4-14 https://doi.org/10.1016/S0142-727X(96)00149-X
  11. Dol, H. S. Opstelten and I. J., Hanjalic, K., 2000, 'Turbulent Natural Convection in a Side-Heated Near-Cubic Enclosure: Experiments and Model Computations,' Technical report APTFR/ 00-02, Thermal and Fluids Science Section, Department of Applied Physics, Delft University of Technology, Delft, The Netherlands
  12. Hanjalic, K., 2002, 'One-Point Closure Models for Buoyancy-Driven Turbulent Flows,' Annu. Rev. Fluid Mech. Vol. 34, pp. 321-347 https://doi.org/10.1146/annurev.fluid.34.082801.161035
  13. Henkes, R. A. W. M. and Hoodendoorn, C. J., 1995, 'Comparison Exercise for Computations of Turbulent Natural Convection in Enclosures,' Numer. Heat Transfer, Part B, Vol. 28, pp. 59-78 https://doi.org/10.1080/10407799508928821
  14. Henkes, R. A. W. M., Van Der Vlugt and F. F. Hoodendoorn, C. J., 1991, 'Natural-Convection Flow in a Square Cavity Calculated with Low-Reynolds-Number Turbulence Models,' Int. J. Heat Mass Transfer, Vol. 34, pp. 377-388 https://doi.org/10.1016/0017-9310(91)90258-G
  15. Hsieh, K. J. and Lien, F. S., 2004, 'Numerical Modeling of Buoyancy-Driven Turbulent Flows in Enclosures,' Int. J. Heat Fluid Flow, in press https://doi.org/10.1016/j.ijheatfluidflow.2003.11.023
  16. Ince, N. Z. and Launder, B. E., 1989, 'On the Computation of Buoyancy-Driven Turbulent Flows in Rectangular Enclosures,' Int. J. Heat Fluid Flow, Vol. 10, pp. 110-117 https://doi.org/10.1016/0142-727X(89)90003-9
  17. Ince, N. Z. and Launder, B. E., 1995, 'Three-Dimensional and Heat-Loss Effects on Turbulent Flow in a Nominally Two-Dimensional Cavity,' Int. J. Heat Fluid Flow, Vol. 16, pp. 171-177 https://doi.org/10.1016/0142-727X(95)97180-Z
  18. Kenjeres, S., 1998, 'Numerical Modelling of Complex Buoyancy-Driven Flows,' Ph. D Thesis, Delft University of Technology, The Netherlands
  19. Kenjeres, S., and Hanjalic, K., 1995, 'Prediction of Turbulent Thermal Convection in Concentric and Eccentric Annuli,' Int. J. Heat Fluid Flow, Vol. 16, pp. 429-439 https://doi.org/10.1016/0142-727X(95)00051-Q
  20. King, K. J., 1989, 'Turbulent Natural Convection in Rectangular Air Cavities,' Ph. D Thesis, Queen Mary College, University of London, U.K
  21. Janssen, R. J. A., 1994, 'Instabilities in Natural-Convection flows in Cavities,' Ph. D thesis, Delft University of Technology, Delft, The Netherlands
  22. Lai, Y. G., and So, R. M. C., 1990, 'Near-Wall Modeling of Turbulent Heat Fluxes,' Int. J. Heat Mass Transfer, Vol. 33, pp. 1429-1440 https://doi.org/10.1016/0017-9310(90)90040-2
  23. Launder, B. E. and Sharma, B. I., 1974, 'Application of the Energy Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc,' Letters in Heat and Mass Transfer, Vol. 1, No. 2, pp. 131-138 https://doi.org/10.1016/0094-4548(74)90150-7
  24. Lien, F. S., and Leschziner, M. A., 1991, 'Second-Moment Modelling of Recirculating Flow with a Non-orthogonal Collocated Finite-Volume Algorithm,' Turbulent Shear Flows, Vol. 8, pp. 205-222
  25. Medic, G. and Durbin, P. A., 2002, 'Toward Improved Prediction of Heat Transfer on Turbine Blades,' J. Turbomachinery, Vol. 124, pp. 187-192 https://doi.org/10.1115/1.1458020
  26. Menter, F. R., 1994, 'Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,' AIAA Journal, Vol. 32, No. 8, pp. 1598-1604 https://doi.org/10.2514/3.12149
  27. Opstelten, I. J., 1994, 'Experimental Study on Transition Characteristics of Natural-Convection Flow,' Ph. D thesis, Delft University of Technology, Delft, The Netherlands
  28. Patankar, S. V., 1980, 'Numerical Heat Transfer and Fluid Flow,' Hemisphere, New York, USA
  29. Peeters, T. W. J. and Henkes, R. A. W. M., 1992, 'The Reynolds-Stress Model of Turbulence Applied to the Natural-Convection Boundary Layer along a Heated Vertical Plate,' Int. J. Heat Mass Transfer, Vol. 35, pp. 403-420 https://doi.org/10.1016/0017-9310(92)90278-Z
  30. Peng, S. H. and Davidson, L., 2001, 'Large Eddy Simulation of Turbulent Buoyant Flow in a Confined Cavity,' Int. J. Heat Fluid Flow, Vol. 22, pp. 323-331 https://doi.org/10.1016/S0142-727X(01)00095-9
  31. Shikazo, N. and Kasagi, N., 1996, 'Second Moment Closure for Turbulent Scalar Transport at Various Prandtl Numbers,' Int. J. Heat Mass Transfer, Vol. 39, pp. 2977-2987 https://doi.org/10.1016/0017-9310(95)00339-8
  32. Shin, J. K., An, J. S. and Choi, Y. D. 2004, 'Near Wall Modelling of Turbulent Heat Fluxes by Elliptic Equation.' Transactions of the Korean Society of Mechanical Engineers, Part B. Vol. 28, pp. 526-534 https://doi.org/10.3795/KSME-B.2004.28.5.526
  33. Shin, J. K., Choi, Y. D. and Lee, G. H., 1993, 'A Low-reynolds Number Second Moment Closure for Turbulent Heat Fluxes,' Transactions of the Korean Society of Mechanical Engineers, Part B. Vol. 17, pp. 3196-3207
  34. Tian, Y. S. and Karayiannis T. G., 2000, 'Low Turbulence Natural Convection in an Air Filled Square Cavity part I : The Thermal and Fluid Flow Fields,' Int. J. Heat Mass Transfer, Vol. 43, pp. 849-866 https://doi.org/10.1016/S0017-9310(99)00199-4
  35. Tieszen, S., Ooi, P., Durbin, P. A. and Behnia, M., 1998, 'Modeling of Natural Convection Heat Transfer,' Proc. Summer Program, Center of Turbulence Research, Stanford University, Stanford, CA, U. S. A., pp. 287-302
  36. Tsuji, T and Nagano, Y., 1987, 'Turbulence Measurements in a Natural Convection Boundary Layer along a Vertical Flat Plate,' Int. J. Heat Mass Transfer, Vol. 31, pp. 2101-2111 https://doi.org/10.1016/0017-9310(88)90120-2
  37. Van Leer, B., 1974, 'Towards the Ultimate Conservative Difference Scheme: Monotonicity and Conservation Combined in a Second Order Scheme,' J. Comput. Phy., Vol. 14, pp. 361-370 https://doi.org/10.1016/0021-9991(74)90019-9
  38. Versteegh, T.A.M. and Nieuwstat, F.T.M., 1998, 'Turbulence Budgets of Natural Convection in an Infinite, Differentially Heated, Vertical Wall,' Int. J. Heat Fluid Flow, Vol. 19, pp. 135-149 https://doi.org/10.1016/S0142-727X(97)10018-2
  39. Zhu, J., 1991, 'A Low-Diffusive and Oscillation Free Convection Scheme,' Comm. Appl. Numer. Methods, Vol. 7, pp. 225-232 https://doi.org/10.1002/cnm.1630070307