• Title/Summary/Keyword: Turbulence-Chemistry interaction

Search Result 50, Processing Time 0.02 seconds

Numerical Analysis for the Detailed Structure of Syngas Turbulent Nonpremixed Flames (석탄가스 난류비예혼합 화염장의 해석)

  • Lee, Jeong-Won;Kim, Chang-Hwan;Kim, Yong-Mo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.775-778
    • /
    • 2007
  • The present study numerically investigate the detailed structure of the syngas diffusion flames. In order to realistically represent the turbulence-chemistry interaction, the transient flamelet model has been applied to simulate the combustion processes and $NO_X$ formation in the syngas turbulent nonpremixed flames. The single mixture fraction formulation is extended to account for the effects of the secondary inlet mixture. Computations are the wide range of syngas compositions and oxidizer dilutions. Based on numerical results, the detailed discussion has been made for the effects of syngas composition and oxidizer dilution on the structure of the syngas-air and syngas-oxygen turbulent nonpremixed flames.

  • PDF

Evaluation of the Structural Coal Combustion Model in a Swirling Pulverized Coal Combustor (탈휘발 예측 코드를 활용한 탈휘발 및 촤반응 모델 평가)

  • Joung, Daero;Han, Karam;Huh, Kang Y.;Park, Hoyoung
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.2
    • /
    • pp.32-39
    • /
    • 2012
  • In this study, pre-processor code based on structural behavior of coal is applied to predict yields, pyrolysis rate and compositions of volatile and char. These parameters are used in the devolatilization and char burnout sub-models as user-defined functions of commercial CFD code. The predicted characteristics of these sub-models are compared with those employing the conventional model based on experiment and validated against the measurement of a 2.1 MW swirling pulverized coal flame in a semi-industrial scale furnace. And the influence of the turbulence-chemistry interaction on pulverized coal combustion is analyzed.

Numerical Modeling of Soot Formation in $C_2H_4$/Air Turbulent Non-premixed Flames ($C_2H_4$/Air 비예혼합 난류화염의 매연생성 모델링)

  • Kim, Tae-Hoon;Woo, Min-O;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.22-28
    • /
    • 2010
  • The Direct Quadrature Method of Moments (DQMOM) has been presented for the solution of population balance equation in the wide range of the multi-phase flows. This method has the inherently interesting features which can be easily applied to the multi-inner variable equation. In addition, DQMOM is capable of easily coupling the gas phase with the discrete phases while it requires the relatively low computational cost. Soot inception, subsequent aggregation, surface growth and oxidation are described through a population balance model solved with the DQMOM for soot formation. This approach is also able to represent the evolution of the soot particle size distribution. The turbulence-chemistry interaction is represented by the laminar flamelet model together with the presumed PDF approach and the spherical harmonic P-1 approximation is adopted to account for the radiative heat transfer.

Numerical Investigation on the Thermal Characteristics of Mild Combustion According to Co-axial Air (동축공기에 따른 Mild 연소의 열적 특성에 대한 수치연구)

  • Hwang, Chang-Hwan;Baek, Seung-Wook;Kim, Hak-Young
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.1-8
    • /
    • 2010
  • Mild combustion is considered as a promising combustion technology for energy saving and low emission of combustion product gases. In this paper, the controllability of reaction region in mild combustion is examined by using co-axial air nozzle. For this purpose, numerical approach is carried out. Propane is considered for fuel and air is considered for oxidizer and the temperature of air is assumed 900K slightly higher than auto ignition temperature of propane. But unlike main air, the atmospheric condition of co-axial air is considered. Various cases are conducted to verify the characteristics of Co-Axial air burner configuration. The use of coaxial air can affect reaction region. These modification help the mixing between fuel and oxidizer. Then, reaction region is reduced compare to normal burner configuration. The enhancement of main air momentum also affects on temperature uniformity and reaction region. The eddy dissipation concept turbulence/chemistry interaction model is used with two step of global chemical reaction model.

Large-Eddy Simulation based Eulerian PDF Approach for the Simulation of Scramjet Combustors (대와류모사 기법과 확률밀도함수를 이용한 스크램제트 연소부에서의 연소 현상 연구)

  • Koo, Heeseok
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.355-357
    • /
    • 2012
  • A probability density function (PDF) approach to account for turbulence-chemistry interaction in the context of large eddy simulation (LES) based simulation of scramjets is developed. To solve the high-dimensional joint-composition PDF transport equation robustly, the semi-discrete quadrature method of moments (SeQMOM) is recently proposed [1]. The SeQMOM approach addresses key numerical issues in LES related to the inaccuracies in computing filter-scale gradients, enabling an efficient and numerically consistent solution of the PDF transport equation. The computational tool is used to simulate a cavity-stabilized Mach 2.2 supersonic combustor.

  • PDF

Computational Validation of Supersonic Combustion Phenomena associated with Hypersonic Propulsion (극초음속 추진과 관련된 초음속 연소 현상의 수치적 검증)

  • Choi Jeong-Yeol;Jeung In-Seuck;Yoon Youngbin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.117-122
    • /
    • 1998
  • A numerical study is carried out to investigate the transient process of combustion phenomena associated with hypersonic propulsion devices. Reynolds averaged Navier-Stokes equations for reactive flows are used as governing equations with a detailed chemistry mechanism of hydrogen-air mixture and two-equation SST turbulence modeling. The governing equations are discretized by a high order accurate upwind scheme and solved in a fully coupled manner with a fully implicit time accurate method. At first, oscillating shock-induced combustion is analyzed and the comparison with experimental result gives the validity of present computational modeling. Secondly, the model ram accelerator experiment was simulated and the results show the detailed transient combustion mechanisms. Thirdly, the evolution of oblique detonation wave is simulated and the result shows transient and final steady state behavior at off-stability condition. Finally, shock wave/boundary layer interaction in combustible mixture is studied and the criterion of boundary layer flame and oblique detonation wave is identified.

  • PDF

Flamelet and Conditional Moment Closure Modeling for the Turbulent Recirculating Nonpremixed Flames (화염편 및 조건평균법 모델을 이용한 재순환 비예혼합 난류 화염장의 해석)

  • Kim, Gun-Hong;Kang, Sung-Mo;Kim, Yong-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1616-1624
    • /
    • 2004
  • The conditional moment closure(CMC) model has been implemented in context with the unstructured-grid finite-volume method which efficiently handle the physically and geometrically complex turbulent reacting flows. The validation cases include a turbulent nonpremixed CO/$H_2$/$N_2$ Jet flame and a turbulent nonpremixed $H_2$/CO flame stabilized on an axisymmetric bluff-body burner. In terms of mean flame field, minor species and NO formation, numerical results has the overall agreement with expermental data. The detailed discussion has been made for the turbulence-chemistry interaction and NOx formation characteristics as well as the comparative performance for CMC and flamelet model.

Two Conserved Scalar Approach for the Turbulent Nonpremixed Flames (다중 혼합기 난류 비예혼합 연소시스템에 대한 수치모델링)

  • Kim, Gun-Hong;Kang, Sung-Mo;Kim, Yong-Mo;Ahn, Kook-Young
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.57-61
    • /
    • 2003
  • In the combustion modeling of non-premixed flames, the mixture fraction conserved scalar approach is widely utilized because reactants are mixed at the molecular level before burning and atomic elements are conserved in chemical reactions. In the mixture fraction approach, combustion process is simplified to a mixing problem and the interaction between chemistry and turbulence could be modelled by many sophisticated combustion models including the flamelet model and CMC. However, most of the mixture fraction approach is restricted to one mixture system. In this study, the flamelet model based on the two-feed system is extended to the multiple fuel-feeding systems by the two mixture fraction conserved scalar approach.

  • PDF

Multi-environment PDF Modeling for MILD Combustion Processes (Multi-environment PDF 모델을 이용한 MILD 연소과정 해석)

  • Ji, Hyunggeun;Jeon, Sangtae;Kim, Yongmo
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.4
    • /
    • pp.43-50
    • /
    • 2017
  • In this study, the multi-environment probability density function(MEPDF) approach has been applied to numerically investigate Delft-Jet-in-Hot-Coflow(DJHC) turbulent flames under Moderate or Intense Low-oxygen Dilution (MILD) combustion condition. Computations are made for two different jet velocities(Re = 4100 and 8800). In terms of mean axial velocity, temperature, and turbulent kinetic energy, numerical results are in reasonably good agreements with experimental data even if there exist the noticeable deviations in downstream region. Based on numerical results, the detailed discussions are made for the essential features of the non-visible flame structure and MILD combustion processes.

Numerical Modeling of Turbulent Swirling Premixed Lifted Flames (선회유동을 가지는 난류 예혼합 부상화염장의 해석)

  • Kang, Sung-Mo;Kim, Yong-Mo;Chung, Jae-Hwa;Ahn, Dal-Hong
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.89-95
    • /
    • 2006
  • This study has numerically modelled the combustion processes of the turbulent swirling premixed lifted flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially-injected air jets induce the turbulent swirling flow which plays the crucial role to stabilize the turbulent lifted flame. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flamelet model. Two-dimensional and three-dimensional computations are made for the various swirl numbers and nozzle length. In terms of the centerline velocity profiles and flame liftoff heights, numerical results are compared with experimental data The three-dimensional approach yields the much better conformity with agreements with measurements without any analytic assumptions on the inlet swirl profiles, compared to the two-dimensional approach. Numerical clearly results indicate that the present level-set based flamelet approach has realistically simulated the structure and stabilization mechanism of the turbulent swirling stoichiometric and lean-premixed lifted flames in the low-swirl burner.

  • PDF