Numerical Investigation on the Thermal Characteristics of Mild Combustion According to Co-axial Air

동축공기에 따른 Mild 연소의 열적 특성에 대한 수치연구

  • 황창환 (한국과학기술원 기계항공 시스템 공학부) ;
  • 백승욱 (한국과학기술원 기계항공 시스템 공학부) ;
  • 김학영 (한국과학기술원 기계항공 시스템 공학부)
  • Received : 2010.08.24
  • Accepted : 2010.10.22
  • Published : 2010.12.31

Abstract

Mild combustion is considered as a promising combustion technology for energy saving and low emission of combustion product gases. In this paper, the controllability of reaction region in mild combustion is examined by using co-axial air nozzle. For this purpose, numerical approach is carried out. Propane is considered for fuel and air is considered for oxidizer and the temperature of air is assumed 900K slightly higher than auto ignition temperature of propane. But unlike main air, the atmospheric condition of co-axial air is considered. Various cases are conducted to verify the characteristics of Co-Axial air burner configuration. The use of coaxial air can affect reaction region. These modification help the mixing between fuel and oxidizer. Then, reaction region is reduced compare to normal burner configuration. The enhancement of main air momentum also affects on temperature uniformity and reaction region. The eddy dissipation concept turbulence/chemistry interaction model is used with two step of global chemical reaction model.

Keywords

References

  1. J. Weinberg, "Advanced Combustion Methods", Academic Press, 1986
  2. J. A. Wunning and J. G. Wunning, "Flameless oxidation to reduce thermal no-formation", Progress in Energy and Combustion Science, Vol. 23, No. 1, pp. 81-94, 1997. https://doi.org/10.1016/S0360-1285(97)00006-3
  3. Katsuki, Masashi, Hasegawa, Toshiaki, "The science and technology of combustion in highly preheated air", Twenty-Seventh Symposium (International) on Combustion, Vol. 2, pp. 3135-3146, 1998.
  4. A. Cavaliere, M. De Joannon, "Mild Combustion", Progress in Energy and Combustion Science, Vol. 30, No. 4, 2004, pp. 329-366 https://doi.org/10.1016/j.pecs.2004.02.003
  5. B.B Dally, E. Riesmeier, and N. Peters, "Effect of fuel mixture on moderate and intense low oxygen dilution combustion", Combustion and Flame, Vol. 137, 2004, pp. 418-431 https://doi.org/10.1016/j.combustflame.2004.02.011
  6. A. Parente, C. Gallettia and L. Tognottia, "Effect of the combustion model and kinetic mechanism on the MILD combustion in an industrial burner fed with hydrogen enriched fuels", International Journal of Hydrogen Energy, Vol. 33, No. 24, 2008, pp. 7553-7564 https://doi.org/10.1016/j.ijhydene.2008.09.058
  7. I.R. Gran, B. F. Magnussen, "A numerical study of a bluff-body stabilized diffusion flame. Part 2. Influence of combustion modeling and finiterate chemistry", Combustion Science Technology, Vol. 119, 1996, pp. 191-217 https://doi.org/10.1080/00102209608951999
  8. G.G. Szego, B.B. Dally, G.J. Nathan, "Operational characteristics of a parallel jet MILD combustion burner system", Combustion and Flame, Vol. 156, No. 2, 2009, pp. 429-438 https://doi.org/10.1016/j.combustflame.2008.08.009
  9. Jianchun Mi, Pengfei Li and Chuguang Zheng, "Numerical Simulation of Flameless Premixed Combustion with an Annular Nozzle in a Recuperative Furnace", Chinese Journal of Chemical Engineering, Vol. 18, No. 1, 2010, pp. 10-17 https://doi.org/10.1016/S1004-9541(08)60316-X
  10. T. F. Smith, Z. F. Shen, and J. N. Friedman, "Evaluation of Coefficients for the Weighted Sum of Gray Gases Model", Journal of Heat Transfer, Vol. 104, 1982, pp. 602-608 https://doi.org/10.1115/1.3245174
  11. A. Coppalle and P. Vervisch, "The Total Emissivities of High-Temperature Flames", Combustion and Flame, Vol. 49, 1983, pp. 101-108 https://doi.org/10.1016/0010-2180(83)90154-2
  12. B. F. Magnussen and B. H. Hjertager, "On mathematical models of turbulent combustion with special emphasis on soot formation and combustion", Sixteenth Symposium (International) on Combustion, The Combustion Institute, 1976, Vol. 1, pp. 719-729
  13. P. J. Coelho, N. Peters, "Numerical simulation of a Mild combustion burner", Combustion and Flame, Vol. 124, No. 3, 2001, pp. 503-518 https://doi.org/10.1016/S0010-2180(00)00206-6
  14. C.K. Westbrook and F.L. Dryer, "Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames", Combustion Science and Technology, Vol. 27, No. 1, 1981, pp. 31-43 https://doi.org/10.1080/00102208108946970
  15. Fluent 6.3 Manual
  16. D. Tabacco, C. Innarella, and C. Bruno, "Theoretical and Numerical Investigation on Flameless Combustion", Combustion Science and Technology, Vol. 174, No. 7, 2002, pp. 1-35 https://doi.org/10.1080/00102200208984086
  17. W. Yang and W. Blasiak, "Mathematical modelling of NO emissions from high-temperature air combustion with nitrous oxide mechanism", Fuel Processing Technology, Vol. 86, 2005, pp. 943-957 https://doi.org/10.1016/j.fuproc.2004.10.005
  18. G. Loffler, R. Siebera, M. Haraseka, H. Hofbauera, R. Haussb, J. Landauf, "NOx formation in natural gas combustion-a new simplified reaction scheme for CFD calculations", Fuel, Vol. 85, 2006, pp. 513-523 https://doi.org/10.1016/j.fuel.2005.07.012
  19. 김학영, 백승욱, 손희, 김세원, "NOx저감을 위한 연료희박 재연소 기법의 실험 및 수치적 연구", 한국연소학회지, Vol. 14, No. 2, 2006, pp. 18-25