1 |
E. Oldenhof, M. J. Tummers, E. H. van Veen, and D. J. E. M. Roekaerts, Role of entrainment in the stabilisation of jet-in-hot-coflow flames, Combust. Flame., 158 (2011) 1553-1563.
DOI
|
2 |
J. W. Labahn, D. Dovizio, and C. B. Devaud, Numerical simulation of the Delft-Jet-in-Hot-Coflow (DJHC) flame using Conditional Source-term Estimation, Proc. Combust. Inst., 35 (2015) 3547-3555.
DOI
|
3 |
S. Zahirović, R. Scharler, P. Kilpinen, I. Obernberger, Validation of flow simulation and gas combustion sub-models for the CFD-based prediction of NOx formation in biomass grate furnaces, Combust. Theory Mod., 15 (2010) 61-87.
DOI
|
4 |
S. R. Shabanian, P. R. Medwell, M. Rahimi, A. Frassoldati, A. Cuoci, Kinetic and fluid dynamic modeling of ethylene jet flames in diluted and heated oxidant stream combustion conditions, Appl. Therm. Eng., 52(2) (2013) 538-554.
DOI
|
5 |
S. B. Pope, PDF methods for turbulent reactive flows, Prog. Energy Combust. Sci., 11 (1985) 119-192.
DOI
|
6 |
H. Wang, and S. B. Pope, Large eddy simulation/probability density function modeling of a turbulent jet flame, Proc. Combust. Inst., 33 (2011) 1319-1330.
DOI
|
7 |
R. O. Fox, Computational models for turbulent reacting flows, Cambridge University Press, Cambridge, 2003.
|
8 |
Q. Tang, W. Zhao, M. Bockelie, and R.O. Fox, Multi-environment probability density function method for modelling turbulent combustion using realistic chemical kinetics, Combust. Theory. Mod., 11 (2007) 889-907.
DOI
|
9 |
L. Valino, A field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow, Flow Turbul. Combust., 60 (1998) 157-172.
DOI
|
10 |
W. P. Jones, and V. N. Prasad, Large Eddy simulation of the sandia flame series (D, E and F) using the Eulerian stochastic field method, Combust. Flame., 157 (2010) 1621-1636.
DOI
|
11 |
S. T. Jeon, and Y. M. Kim, Numerical Investigations of turbulent flames under MILD condition, The 51th KOSCO Symposium, Dec. 10th-11th 2015, 267-268.
|
12 |
J. W. Lee, and Y. M. Kim, DQMOM based PDF transport modeling for turbulent lifted nitrogen-diluted hydrogen jet flame with autoignition, Int. J. Hydrogen Energy, 37 (2012) 18498-18508.
DOI
|
13 |
A. De, and A. Dongre, Assessment of turbulence-chemistry interaction models in MILD combustion regime. Flow Turbulence Combust., 94(2) (2015) 439-478.
DOI
|
14 |
C. T. Bowman, R. K. Hanson, D. F. Davidson, W. C. Gardiner, Jr., V. Lissianski, G. P. Smith, D. M. Golden, M. Frenklach, and M. Goldenberg, http://combustion.berkeley.edu/gri-mech/new21/version21/text21.html
|
15 |
Akroyd J., Smith A. J., McGlashan L. R., and Kraft M. (2010) "Numerical investigation of DQ MoM-IEM as a turbulent reaction closure," Chem. Eng. Sci., vol. 65, pp.1915-1924.
DOI
|
16 |
H. S. Koo, P. Donde, and V. Raman, A Quadrature-based LES/Transported Probability Density Function Approach for Modeling Supersonic Combustion, Proc. Combust. Ins. 33 (2011) 2203-2210.
DOI
|
17 |
A. Mardani, S. Tabejamaat, and M. Ghamari, Numerical study of influence of molecular diffusion in the mild combustion regime. Combust. Theory Mod., 14 (2010) 747-774.
DOI
|
18 |
B. J. Isaac, A. Parente, C. Galletti, J. N. Thornock, P. J. Smith, and L. Tognotti, A novel methodology for chemical time scale evaluation with detailed chemical reaction kinetics. Energy Fuels, 27 (2013) 2255-2265.
DOI
|
19 |
M. Mörtberg, W. Blasiak, and A. K. Gupta, Experimental investigation of flow phenomena of a single fuel jet in cross-flow during highly preheated air combustion conditions. J. Eng. Gas Turbines Power, 129(2) (2007) 556-564.
DOI
|
20 |
H. Tsuji, A. K. Gupta, T. Hasewaga, M. Katsuki, K. Kishimoto, and M. Morita, High temperature air combustion: from energy conservation to pollution reduction; CRC Press, 2002.
|
21 |
P. Sabia, M. Joannon, S. Fierro, A. Tregrossi, and A. Cavaliere, Hydrogen-enriched methane mild combustion in a well stirred reactor. Exp. Therm. Fluid Sci., 31 (2007) 469-475.
DOI
|
22 |
P. H. Lee and S. S. Hwang, Experimental Study for Oxygen Methane MILD Combustion in a Laboratory Scale Furnace, J. Korean Soc. Combust., 21(4) (2016) 6-15.
DOI
|
23 |
A. De, E. Oldenhof and P. Sathiah, Numerical Simulation of Delft-Jet-in-Hot-Coflow (DJHC) Flames Using the Eddy Dissipation Concept Model for Turbulence-Chemistry Interction, Flow Turbulence Combust., 87(4) (2011) 537-567.
DOI
|
24 |
A. Dongre, A. De, and R. Yadav, Numerical investigation of MILD combustion using multi-environment Eulerian probability density function modeling, Int. J. of spray and combust. dynamics, 6(4) (2014) 357-386.
DOI
|
25 |
E. Oldenhof, M. J. Tummers, E. H. van Veen, and D. J. E. M. Roekaerts, Ignition kernel formation and lift-off behaviour jet-in-hot-coflow flames, Combust. Flame., 157 (2010) 1167-1178.
DOI
|