• Title/Summary/Keyword: Turbulence Models

Search Result 609, Processing Time 0.025 seconds

A Numerical Study on the Flowfield around a NACA 0021 Airfoil at Angles of Attack (NACA 0021 익형 유동장의 수치해석적 연구)

  • Kim, Sang-Dug
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.4
    • /
    • pp.20-25
    • /
    • 2016
  • A primary benefit of flight at high angle-of-attack conditions is to be able to reduce the speed of flight and maneuvers, which can enhance the capability of sensing and obstacle avoidance for a small UAV. The flight at high angle-of-attack conditions, however, is easy to be beyond stall which is characterized by substantial flow separation over an airfoil. Current numerical analysis was conducted on the capabilities of three representative turbulence models to predict the aerodynamic characteristics of a typical airfoil at angle-of-attack conditions. The investigation shows that these turbulence models provide good comparison with experimental data for attached flow at moderate angle-of-attack conditions. Calculation by current turbulence models are, however, not appropriate at high angle-of-attack conditions with flow separation.

Comparison of several computational turbulence models with full-scale measurements of flow around a building

  • Wright, N.G.;Easom, G.J.
    • Wind and Structures
    • /
    • v.2 no.4
    • /
    • pp.305-323
    • /
    • 1999
  • Accurate turbulence modeling is an essential prerequisite for the use of Computational Fluid Dynamics (CFD) in Wind Engineering. At present the most popular turbulence model for general engineering flow problems is the ${\kappa}-{\varepsilon}$ model. Models such as this are based on the isotropic eddy viscosity concept and have well documented shortcomings (Murakami et al. 1993) for flows encountered in Wind Engineering. This paper presents an objective assessment of several available alternative models. The CFD results for the flow around a full-scale (6 m) three-dimensional surface mounted cube in an atmospheric boundary layer are compared with recently obtained data. Cube orientations normal and skewed at $45^{\circ}$ to the incident wind have been analysed at Reynolds at Reynolds number of greater than $10^6$. In addition to turbulence modeling other aspects of the CFD procedure are analysed and their effects are discussed.

Evaluation of the K-Epsilon-VV-F Turbulence Model for Natural Convection in a Rectangular Cavity (직사각형 공동 내부 자연연대류 문제에 대한 k-epsilon-vv-f 난류모델의 평가)

  • Choi Seok-Ki;Kim Seong-O;Kim Eui-Kwang;Choi Hoon-Ki
    • Journal of computational fluids engineering
    • /
    • v.7 no.4
    • /
    • pp.8-18
    • /
    • 2002
  • The primary objective of the present study is evaluation of the k-ε-vv-f turbulence model for prediction of natural convection in a rectangular cavity. As a comparative study, the two-layer k-ε model is also considered. Both models, with and without algebraic heat flux model, are applied to the analysis of natural convection in a rectangular cavity. The performances of turbulence models are investigated through comparison with available experimental data. The predicted results of vertical velocity component, turbulent heat fluxes, turbulent shear stress, local Nusselt number and wall shear stress are compared with experimental data. It is shown that, among the turbulence models considered in the present study, the k-ε-vv-f model with an algebraic heat flux model predicts best the vertical mean velocity and velocity fluctuation, and the inclusion of algebraic heat flux model slightly improves the accuracy of results.

CFD Simulation of Axial Turbulent Flow in a Triangular Rod Bundle

  • In W.K.;Chun T. H.;Myong H. K;Ko K
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.71-73
    • /
    • 2003
  • A CFD analysis has been made for fully developed turbulent flows in a triangular bare rod bundle with pitch to diameter ratio (P/D) of 1.123. The nonlinear turbulence models predicted the turbulence­driven secondary flow in the triangular subchannel. The nonlinear quadratic $\kappa-\omega$ models by Speziale and Myong-Kasagi predicted turbulence structure in the rod bundle fairly well. The nonlinear quadratic and cubic $\kappa-\omega$ models by Shih et al. and Craft et al. showed somewhat weaker anisotropic turbulence. The differential Reynolds stress model appeared to overpredict the turbulence anisotropy in the rod bundle.

  • PDF

Validation of the Reynolds Stress Turbulence Models in Turbulent Jet Diffusion Flames (난류분류확산화염에 대한 레이놀즈응력모델의 적용성 검토)

  • 한지웅;이태우;이근오;이창언
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.3
    • /
    • pp.66-74
    • /
    • 1996
  • Numerical simulations were carried out using standard Reynolds stress turbulence model(LRR model) and modified RSM(Janicka model ) to validate these models in combustion flow fields. Two flames were selected for use as a benchmark data for model testing. One is a conventional jet diffusion flame that has the effect of suppression of turbulence by combustion. The other is a triple jet diffusion flame that designed to give high turbulence to the periphery of the flame and to remove the low Reynolds-number flow fields. As a result, it was found that the modification of standard RSM model is indispensable in the modelling of flames with low turbulence region. And it is also necessary to improve the existing modified models for the universal use.

  • PDF

Comparison of Turbulence Models through Three Dimensional Numerical Soultion for the Tip Region of an Axial Compressor Cascade (축류 압축기 날개열의 팁 영역에 관한 3차원 수치해석을 통한 난류모형 비교)

  • Choi I. K.;Maeng J. S.
    • Journal of computational fluids engineering
    • /
    • v.2 no.2
    • /
    • pp.18-25
    • /
    • 1997
  • A pressure-based Navier-Stokes numerical solver was used to compare solutions of the k-ε/RNG k-ε turbulence models. An efficient grid generation scheme, the transient grid generation with full boundary control, was used to solve the flows in the tip clearance region. Results indicate that the calculations using k-ε model captures various phenomena related to the tip clearance with good accuracy.

  • PDF

Numerical Analysis of a Diffuser Flow with Expansion and Streamline Curvature (확대 및 유선곡률을 가진 디퓨저 흐름의 수치해석)

  • 이연원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.595-608
    • /
    • 1998
  • A diffuser an important equipment to change kinetic energy into pressure energy has been studied for a long time. Though experimental and theoretical researches habe been done the understanding of energy transfer and detailed mechanism of energy dissipation is unclear. As far as numerical prediction of diffuser flows are concerned various numerical studies have also been done. On the contrary many turbulence models have constraint to the applicability of diffuser-like flows with expansion and streamline curvature. In order to obtain the reliability of k-$\varepsilon$ turbulence model modified combination turbulence models composed of the anisotropic k-$\varepsilon$model modified combination turbulence models composed of the anisotropic k-$\varepsilon$ model with Hanjalic-Launder's preferential normal strain and Pope's vortex stretching mechanism are proposed. The results of the present proposed models prove the fact that the coefficient of pressure and the shear stress are well predicted at the diffuser flow.

  • PDF

DEVELOPMIN OF A MODIFIED $k-{\varepsilon}$ TURBULENCE MODEL FOR VISCO-ELASTIC FLUID AND ITS APPLICATION TO HEMODYNAMICS (점탄성 유체의 난류 해석을 위한 수정된 $k-{\varepsilon}$ 난류모델 개발 및 혈류역학에의 적용)

  • Ro, K.C.;Ryou, H.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.214-220
    • /
    • 2010
  • This article described that a high Reynolds number version of a turbulence model was modified by using drag reduction to analyze the turbulent flows of non-Newtonian fluid with visco-elastic viscosity and it was applied hemodynamics which was representative of visco-elastic fluid. The turbulence characteristics of visco-elastic fluid was expanded viscous sublayer region and buffer layer region by drag reduction phenomenon and also Newtonian turbulence models does not predict because viscosity was related with shear rate of fluid flow. Hence numerical simulation using a modified turbulence model was conducted under the same conditions that were applied to obtain the experiment results and previous turbulence models and then the numerical investigation of turbulent blood flow in the stenosed artery bifurcation under periodic acceleration of the human body.

  • PDF

EVALUATION OF TURBULENCE MODELS IN A HIGH PRESSURE TURBINE CASCADE SIMULATION (고압터빈 익렬 주위 유동해석에서 난류모델의 영향 평가)

  • El-Gendi, M.M.;Lee, K.U.;Chung, W.J.;Joh, C.Y.;Son, C.H.
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.53-58
    • /
    • 2012
  • Steady flow simulations through a high pressure turbine guide vanes were carried out. The main objective of the present work is to study the performance of turbulence models on the steady flow prediction from aerodynamic and aerothermal points of view. Three turbulence models were compared, namely SST, k-${\omega}$ and ${\omega}$-Reynolds stress models. The laminar results were also compared. The comparison was done with emphasis on the isentropic Mach number and heat transfer coefficient along the blade, and total pressure loss in the wake region. The calculated isentropic Mach number showed reasonable agreement with experimental data along the blade surface for all three turbulent models. For the total pressure loss in the wake region, ${\omega}$-Reynolds stress model showed the best agreement with the experimental data. However, unless using an appropriate transition model, the heat transfer coefficients of all three turbulent models showed poor agreement with experimental data.

Evaluation of Two-Equation Turbulence Models with Surface Roughness Effect (표면 거칠기 효과를 고려한 2-방정식 난류 모델의 성능평가)

  • Yoon, Joon-Yong;Chun, Jung-Min;Kang, Seung-Kyu;Byun, Sung-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1681-1690
    • /
    • 2003
  • The effect of roughness is a change in the velocity and turbulence distributions near the surface. Turbulence models with surface roughness effect are applied to the fully developed flow in a two-dimensional, rough wall channel. Modified wall function model, low-Reynolds number k-$\varepsilon$ model, and k-$\omega$ model are selected for comparison. In order to make a fair comparison, the calculation results are compared with the experimental data. The modified wall function model and the low-Reynolds number k-$\varepsilon$ model require further refinement, while the k-$\omega$ model of Wilcox performs remarkably well over a wide range of roughness values.