• Title/Summary/Keyword: Tuning time

Search Result 849, Processing Time 0.027 seconds

Initial Frequency Preset Technique for Fast Locking Fractional-N PLL Synthesizers

  • Sohn, Jihoon;Shin, Hyunchol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.4
    • /
    • pp.534-542
    • /
    • 2017
  • This paper presents a fast locking technique for a fractional-N PLL frequency synthesizer. The technique directly measures $K_{VCO}$ on a chip, computes the VCO's target tuning voltage for a given target frequency, and directly sets the loop filter voltage to the target voltage before the PLL begins the normal closed-loop locking process. The closed-loop lock time is significantly minimized because the initial frequency of the VCO are put very close to the desired final target value. The proposed technique is realized and designed for a 4.3-5.3 GHz fractional-N synthesizer in 65 nm CMOS and successfully verified through extensive simulations. The lock time is less than $12.8{\mu}s$ over the entire tuning range. Simulation verifications demonstrate that the proposed method is very effective in reducing the synthesizer lock time.

Adaptive length SMA pendulum smart tuned mass damper performance in the presence of real time primary system stiffness change

  • Contreras, Michael T.;Pasala, Dharma Theja Reddy;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.219-233
    • /
    • 2014
  • In a companion paper, Pasala and Nagarajaiah analytically and experimentally validate the Adaptive Length Pendulum Smart Tuned Mass Damper (ALP-STMD) on a primary structure (2 story steel structure) whose frequencies are time invariant (Pasala and Nagarajaiah 2012). In this paper, the ALP-STMD effectiveness on a primary structure whose frequencies are time varying is studied experimentally. This study experimentally validates the ability of an ALP-STMD to adequately control a structural system in the presence of real time changes in primary stiffness that are detected by a real time observer based system identification. The experiments implement the newly developed Adaptive Length Pendulum Smart Tuned Mass Damper (ALP-STMD) which was first introduced and developed by Nagarajaiah (2009), Nagarajaiah and Pasala (2010) and Nagarajaiah et al. (2010). The ALP-STMD employs a mass pendulum of variable length which can be tuned in real time to the parameters of the system using sensor feedback. The tuning action is made possible by applying a current to a shape memory alloy wire changing the effective length that supports the damper mass assembly in real time. Once a stiffness change in the structural system is detected by an open loop observer, the ALP-STMD is re-tuned to the modified system parameters which successfully reduce the response of the primary system. Significant performance improvement is illustrated for the stiffness modified system, which undergoes the re-tuning adaptation, when compared to the stiffness modified system without adaptive re-tuning.

Robust tuning of quadratic criterion-based iterative learning control for linear batch system

  • Kim, Won-Cheol;Lee, Kwang-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.303-306
    • /
    • 1996
  • We propose a robust tuning method of the quadratic criterion based iterative learning control(Q-ILC) algorithm for discrete-time linear batch system. First, we establish the frequency domain representation for batch systems. Next, a robust convergence condition is derived in the frequency domain. Based on this condition, we propose to optimize the weighting matrices such that the upper bound of the robustness measure is minimized. Through numerical simulation, it is shown that the designed learning filter restores robustness under significant model uncertainty.

  • PDF

Fuzzy Control Method By Automatic Scaling Factor Tuning (자동 양자이득 조정에 의한 퍼지 제어방식)

  • 강성호;임중규;엄기환
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2807-2810
    • /
    • 2003
  • In this paper, we propose a fuzzy control method for improving the control performance by automatically tuning the scaling factor. The proposed method is that automatically tune the input scaling factor and the output scaling factor of fuzzy logic system through neural network. Used neural network is ADALINE (ADAptive Linear NEron) neural network with delayed input. ADALINE neural network has simple construct, superior learning capacity and small computation time. In order to verify the effectiveness of the proposed control method, we performed simulation. The results showed that the proposed control method improves considerably on the environment of the disturbance.

  • PDF

Implicit self tuning controller with pole restriction

  • Cho, Won-Chul;Jeon, Gi-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.13-17
    • /
    • 1993
  • In this paper, a design method of controller which incorporates pole restriction into implicit self tuning algorithm is proposed. The idea behind pole restriction is that the closed loop poles of the system are restricted to a user-chosen circle in the region to meet maximum percentage overshoot and settling time specification. Most algorithm based on pole restriction are explicit schemes involving a parameter estimation and synthesis stage to obtain controller parameters. The object of this paper is to have an algorithm that has the idea of pole restriction and the simplicity of the implicit approach.

  • PDF

A Combined Fuzzy -PID Controller

  • Jibril Jiya;Cheng Shao;Chai, Tian-You
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.465-468
    • /
    • 1998
  • In this paper, merits of both fuzzy and PID controllers are combined. The combined controller is designed such that the tuning of the PID controller is achieved by the basic fuzzy controller via its rule base. The proposed scheme avoids the tuning of PID parameters which is always a time consuming task, difficult to carry out and often poorly done. Computer simulations are made to demonstrate the satisfactory tracking performance of the combined fuzzy-PID controller.

  • PDF

A Study on the PID controller auto-tuning (PID제어기 자동동조에 관한 연구)

  • Cho, Hyun-Seob
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.630-632
    • /
    • 2009
  • The parameters of PID controller should be readjusted whenever system character change. In spite of a rapid development of control theory, this work needs much time and effort of expert. In this paper, to resolve this defect, after the sample of parameters in the changeable limits of system character is obtained, these parametrs are used as desired values of back propagation learning algorithm, also neural network auto tuner for PID controller is proposed by determing the optimum structure of neural network. Simulation results demonstrate that auto-tuning proper to system character can work well.

  • PDF

A Study on the Suction Power Control of Vacuum Cleaner with a Dust Sensor (먼지센서에 의한 진공청소기의 흡입력 제어에 관한 연구)

  • 백승면;김성진;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.304-307
    • /
    • 1995
  • In this paper, an optical sensing system has been developed to detect the dust in vacuum cleaner. The system works well through self-tuning mechanism, even though there are systemic variance and characteristic change which is caused by the pollution on the surface of the optical elements. Using the developed sensing system, a novel suction power control system has been proposed, which is able to be used for a long time.

  • PDF

A Study of the Development of an Intelligent PID Cjontroller(II) (지능형 PID 제어기 개발에 관한 연구 II)

  • 유연운;이창구;김성중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.847-852
    • /
    • 1993
  • In this paper, we present a recursive algorithm for the auto-tuning of PID controllers by optimizing a GPC criterion. Also, we develop an intelligent PID controller by combination of a recursive algorithm together with a supervisor, that allows to adjust the main controller parameters (prediction horizon, control weighting, sample time etc.) using some simple rules which is mainly built up through relay tuning experiments. The intelligent PID controller has been implemented successfully on an IBM PC/AT and some simulation results are presented.

  • PDF

Application of adaptive predictive control to an electric furnace

  • Kim, Jin-Hwan;Huh, Uk-Youl
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.168-172
    • /
    • 1994
  • This paper shows that the GPC with exponential weighting(GPCEW) can be applied to Electric furnace system which has large time delay. Stability of GPCEW can be guarantee from monotonically non-increasing property of Riccati difference equation. We show that the performance of GPCEW versus GPC and auto-tuning PID control is better than that of GPC or atito-tuning PID.

  • PDF