• Title/Summary/Keyword: Tubular space frame

Search Result 10, Processing Time 0.022 seconds

TUBULAR SURFACES WITH MODIFIED ORTHOGONAL FRAME IN EUCLIDEAN 3-SPACE

  • Akyigit, Mahmut;Eren, Kemal;Kosal, Hidayet Huda
    • Honam Mathematical Journal
    • /
    • v.43 no.3
    • /
    • pp.453-463
    • /
    • 2021
  • In this study, tubular surfaces that play an important role in technological designs in various branches are examined for the case of the base curve is not satisfying the fundamental theorem of the differential geometry. In order to give an alternative perspective to the researches on tubular surfaces, the modified orthogonal frame is used in this study. Firstly, the relationships between the Serret-Frenet frame and the modified orthogonal frame are summarized. Then the definitions of the tubular surfaces, some theorems, and results are given. Moreover, the fundamental forms, the mean curvature, and the Gaussian curvature of the tubular surface are calculated according to the modified orthogonal frame. Finally, the properties of parameter curves of the tubular surface with modified orthogonal frame are expressed and the tubular surface is drawn according to the Frenet frame and the modified orthogonal frame.

A NEW TYPE OF TUBULAR SURFACE HAVING POINTWISE 1-TYPE GAUSS MAP IN EUCLIDEAN 4-SPACE 𝔼4

  • Kisi, Ilim;Ozturk, Gunay
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.923-938
    • /
    • 2018
  • In this paper, we handle the Gauss map of a tubular surface which is constructed according to the parallel transport frame of its spine curve. We show that there is no tubular surface having harmonic Gauss map. Moreover, we give a complete classification of this kind of tubular surface having pointwise 1-type Gauss map in Euclidean 4-space ${\mathbb{E}}^4$.

Optimal Design for Torsional Stiffness of the Tubular Space Frame of a Low-Cost Single Seat Race Car (저가 입문용 1인승 레이스카 Tubular Space Frame의 비틀림 강성 최적설계)

  • Jang, Woongeun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.5955-5962
    • /
    • 2014
  • Generally, the frame design of a vehicle is a critical technology that plays an important role in the racing and high performance sports car market. The high performance of race car frame means that it requires high torsional stiffness because it directly affects the cornering behavior of the race car. The optimal design for the frame of a low-cost single seat race car was carried out using the DOE (Design Of Experiments) with Taguchi's orthogonal array and FEM (Finite Element Method) analysis to secure sufficient torsional stiffness in this paper. According to the results by DOE and FEM analysis, the optimal design case produced improved 10.7% and 14.5% improvement in each stiffness-to-weight ratio and frame weight than in the early design step. Therefore, this paper shows that the optimal design with Taguchi's orthogonal array is very useful and effective for designing a tubular space frame of a low-cost single seat race car in the early design step.

A STUDY OF THE TUBULAR SURFACES ACCORDING TO MODIFIED ORTHOGONAL FRAME WITH TORSION

  • Gulnur SAFFAK ATALAY
    • Honam Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.279-290
    • /
    • 2024
  • In this study, tubular surfaces were introduced according to the modified orthogonal frame defined at the points where the torsion is different from zero in the 3-dimensional Euclidean space. First, the relations between the Frenet frame and the modified orthogonal frame with torsion are given. Then, the singularity, Gaussian curvature, mean curvature and basic forms of the tubular surface given according to the modified orthogonal frame with torsion were calculated. In addition, the conditions for the parameter curves of the tubular surface to be geodesic, asymptotic and line of curvature were examined. Finally, tubular surface examples based on both the Frenet frame and the modified orthogonal frame with torsion were given to support the study.

Tubular composite beam-columns of annular cross-sections and their design practice

  • Kvedaras, A.K.;Kudzys, A.
    • Steel and Composite Structures
    • /
    • v.10 no.2
    • /
    • pp.109-128
    • /
    • 2010
  • The expediency of using tubular composite steel and concrete columns of annular cross-sections in construction is discussed. The new type space framework with tubular composite columns of multi-storey buildings and its rigid beam-column joints are demonstrated. The features of interaction between the circular steel tube and spun concrete stress-strain states during the concentrical and eccentrical loading of tubular composite members are considered. The modeling of the bearing capacity of beam-columns of composite annular cross-sections is based on the concepts of bending with a concentrical force and compression with a bending moment. The comparison of modeling results for the composite cross-sections of beam-columns is analysed. The expediency of using these concepts for the limit state verification of beam-columns in the methods of the partial safety factors design (PSFD) legitimated in Europe and the load and resistance factors design (LRFD) used in other countries is presented and illustrated by a numerical example.

Development of Vertical Separated Tubular Steel Pole (종방향 분할형 관형지지물 개발)

  • Lee, Won-kyo;Mun, Sung-Duk;Shin, Kooyong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.257-262
    • /
    • 2019
  • Lattice steel towers for overhead transmission lines have been replaced by tubular steel poles due to the visual impact of large and complex shape of truss type. Demand for tubular steel poles consisting of a single frame member continues to grow because of its advantages such as visual minimization, architectural appeal and minimal site consumptions. However, there are some constraints on the transportation and construction. As the diameter of tower base has been enlarged, it may exceed minimum height limit required to pass the tunnel in case of land transportation. Also, in a narrow place where it is not easy to secure the installation areas such as mountainous places, there might be some areas wherein it must secure a wide working space so that large vehicles and working cranes will be allowed to enter. In this paper, we presented a vertical separated tubular steel pole, which is a new type of support that can be implemented for general purpose such as mountainous areas or narrow areas to improve the issues raised by breaking away from the conventional design and fabrication methods. Technical approaches for overcoming the limit of the cross-sectional size is to separate and modularize the cross-section of the tubular steel pole designed with a size that cannot be carried or assembled, and to lighten it with a weight capable of being transported and assembled in a narrow space or mountainous area. As a result of this research, it will be possible to enter small and medium sized vehicles in locations where it is restricted to transport by large-sized vehicles. In the case of mountainous areas, it will be possible to divide it into a weight capable of being carried by a helicopter and it will be easy to adjust and fabricate it with individual modules. Furthermore, in order to break away from the traditional construction method, we proposed the equipment that can be applied to the assembly of Tubular Steel Pole without using a large crane in locations where there is no accessible road or in locations wherein large cranes cannot enter. In particular, this paper shows the movable assembling equipment and some methods that are specialized for vertical separated tubular steel pole consisting of members with reduced weight. The proposed assembly equipment is a device for assembling the body of the Tubular Steel Poles. It will be installed inside the support and the modules can be lifted by using the support itself.

A Study on the History of Technology in Korean Modern Architecture (한국 현대건축의 기술역사에 관한 연구)

  • Jung, In-Ha;Kim, Jin
    • Journal of architectural history
    • /
    • v.9 no.3 s.24
    • /
    • pp.51-69
    • /
    • 2000
  • This study tries to analyze the development of architectural technologies appeared in several tall buildings and large spatial structures from 1955 to 1999 in Korea. We suppose that these buildings represent the development of technology in Korean modern architecture. By the detailed analysis of these buildings, we can arrive at a conclusion as such; During the years 1955-1999, there existed a great changement in the eighties. We can find this fact very well in the domain of structural system and curtain wall system. In large spatial structures, the structural-system of shell and steel truss dome was replaced by that of space frame, space truss and cable truss with membrane. In tall building, the structural system of rigid frame and shear wall was replaced by tubular system, core and outrigger system. Korean architects introduced the aluminum curtain wall in the sixties, but its low technological level caused many problems in reality. Therefore, precast concrete curtain wall appeared from seventies as the main method for an outer wall in tall building. With the augmentation of height after 1980, PC curtain wall was replaced by the aluminum curtain wall of unit type and structural glass wall system. These systems help to stress the transparency in a tall building.

  • PDF

Dynamic Analysis of Superstructures on Very Large Floating Structure with Semi-Rigid Connections (반강접 접합부를 적용한 초대형 부유식 구조물 상부구조체에 대한 동적해석)

  • Song Hwa-Cheol;Kim Woo-Nyon
    • Journal of Navigation and Port Research
    • /
    • v.29 no.5 s.101
    • /
    • pp.389-394
    • /
    • 2005
  • The additional moment occurs because the superstructures of VLFS are influenced by wave loads instead of earthquake loads. In order to reduce the additional moment, this study used the semi-rigid connections which lie between fully rigid and pinned. If the semi-rigid connections are used for superstructures of VLFS, the moment of beams can be reduced and more economical construction will be possible. This study aims to show the effect of wave loads on structure and the efficiency of the semi-rigid connections due to wave loads by analyzing the time history responses. The dynamic behaviors of the rigid frame are compared with those of the semi-rigid frame considering of static loads, wave loads and combination loads for a four-bay, three-story frames. The semi-rigid connection type is a steel tubular column with square external-diaphragm connections and the time history analysis is used for the dynamic responses. The additional moment responses due to wave loads increase $33\%$ in the rigid frame, $26\%$ in the semi-rigid frame with the spring model.

Second Order Elastic Analysis of Superstructures on Very Large Floating Structure with Semi-Rigid Connections (반강접 접합부를 적용한 초대형 부유식 구조물 상부구조체의 2차 탄성해석)

  • Song, Hwa-Cheol;Lee, Eun-Suk
    • Journal of Navigation and Port Research
    • /
    • v.27 no.1
    • /
    • pp.63-70
    • /
    • 2003
  • If semi-rigid connections are used for superstructures of very large floating structures (VLFS), the number of rigid connections can be reduced and more economical construction will be possible. In this study, considering service load and wave load in VLFS, the applicability of mixed use of rigid and semi-rigid connections have been studied using three types of connections for a four-bay eight-story frame. Three types of connections are used; top and seat-angle connections with double web-angle(TSD), extended end plate connections, steel tubular column with square external-diaphragm connections. ABAQUS(Finite element analysis program) is used for conducting second order elastic analysis.

Fatigue Field Test of Variable Message Sign Structure and Evaluation of AASHTO Specifications (가변정보판이 설치된 지주구조물에 대한 피로 시험 및 AASHTO설계기준 적용성 평가)

  • Park, Jong Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.11-22
    • /
    • 2006
  • Message Signs (VMS) structures offer an increase in traffic safety through their ability to relay massages to motorists for warnings of hazards ahead, traffic congestion, accidents, and lane closings. The geometry of these signs sometimes results in the significant cyclic loading of the supports structure due to wind gusts, which can result from passing trucks or from natural wind. This study presents the results of analytical and experimental investigations of VMS structures. The commercially available softwareGTSTRUDL (2003) was used to perform space-frame structural analyses of these welded tubular structures. Fatigue evaluations were performed using stress ranges from field measurements and from structural analyses. Based on the results of the structural analyses that were conducted, where fatigue design loadings that had been derived from AASHTO Specifications for Structural Supports for Highway Signs, Luminaries, and Traffic Signals (2001) were used, the structures that had been studied were found not to have infinite fatigue life. According to the limited measurements that were made in this study, the fatigue design loadings derived from AASHTO Specifications (2001) appear to be conservative, but they are not overly conservative. The results of this study should be used to make a reasonable design of VMS structures, and to maintain their standards.