• Title/Summary/Keyword: Tube defect

Search Result 188, Processing Time 0.056 seconds

Design of Tester Apparatus for 48 Channel GM Tube Sensor (48개 채널의 GM Tube 센서 테스터 장치의 설계)

  • Lee, Hee-Yeol;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.310-313
    • /
    • 2016
  • In this paper, we propose the tester apparatus for 48 channel GM Tube sensor. The proposed apparatus can test up to 48 channel GM tube simultaneously to detect the defect and analyze the sensor characteristic. 300-1000V variable high voltage generation circuit is utilized for the apparatus suitable for the sensor characteristic. Thus, the proposed system is useful for various GM Tube sensor characteristic analysis. Multiple sensor testing environment is established for the early detection of the defect and the analysis to reduce the costs for manufacturing and rework. Developed 48 channel GM Tube sensor test is evaluated with certified testing equipment and shows excellent performance with respect to the uncertainty of the sensor test results.

A Study on the Classification of Steam Generator Tube Defects Using an Improved Feature Extraction (개선된 특징 추출을 이용한 원전SG 세관 결함 패턴 분류에 관한 연구)

  • Jo, Nam-Hoon;Lee, Hyang-Beom
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.1
    • /
    • pp.27-35
    • /
    • 2009
  • In this paper, we study the classification of steam generator tube defects using an improved feature extraction. We consider 4 axisymmetric defect patterns of tube: I-In type, I-Out type, V-In type, and V-Out type. Through numerical analysis program based on finite element modeling, 400 ECT signals are generated by varying width and depth of each defect type. From those generated ECT signals, we propose new feature vectors that include an angle between the two points where the Maximum impedance and half the Maximum impedance, and angles between Maximum impedance point and 10%, 20%, 30%, 40% of Maximum impedance points. Also, multi-layer perceptron with one hidden layer is used to classify the defect patterns. Through the computer simulation study, it is shown that the proposed method achieves an improved defect classification performance in terms of Maximum Error and mean square Error.

Prediction of Defect Size of Steam Generator Tube in Nuclear Power Plant Using Neural Network (신경회로망을 이용한 원전SG 세관 결함크기 예측)

  • Han, Ki-Won;Jo, Nam-Hoon;Lee, Hyang-Beom
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.5
    • /
    • pp.383-392
    • /
    • 2007
  • In this paper, we study the prediction of depth and width of a defect in steam generator tube in nuclear power plant using neural network. To this end, we first generate eddy current testing (ECT) signals for 4 defect patterns of SG tube: I-In type, I-Out type, V-In type, and V-Out type. In particular, we generate 400 ECT signals for various widths and depths for each defect type by the numerical analysis program based on finite element modeling. From those generated ECT signals, we extract new feature vectors for the prediction of defect size, which include the angle between the two points where the maximum impedance and half the maximum impedance are achieved. Using the extracted feature vector, multi-layer perceptron with one hidden layer is used to predict the size of defects. Through the computer simulation study, it is shown that the proposed method achieves decent prediction performance in terms of maximum error and mean absolute percentage error (MAPE).

Comparative Reliability of Nondestructive Testing for Weld: Water Wall Tube in Thermal Power Plant Boiler Case Study (용접부 비파괴 검사의 신뢰성 비교: 화력 발전소의 보일러 수냉벽 배관 사례연구)

  • Choi, Chang Deok;Lim, Ik Sung
    • Journal of Applied Reliability
    • /
    • v.18 no.3
    • /
    • pp.240-249
    • /
    • 2018
  • Purpose: The purpose of this research is to find which technique, between the PAUT (Phased array ultrasonic test) that has been used widely in practice and RT (Radiographic test) that was used widely in the past, has the higher reliability as a non-destructive testing of welding points in water wall tubes. Methods: To evaluated the reliability of non-destructive testing, eleven test pieces that were fabricated intentionally, which have the most frequently occurred defect types in water wall tubes and then both the PAUT and RT were performed on those eleven test pieces to compare their reliability. Results: The differences of type of defect, length are occurred due to the characteristics of nondestructive testing. The RT could not detect the lack of fusion defect type in specimen #4 and #8 while PAUT could not detect the lateral crack and 1 mm size small porosity in specimen #11. Conclusion: It is concluded that applying both the RT and PAUT result the best reliability rather than applying only one test method, if it is possible, in nondestructive testing of weld water wall tube in thermal power plant boiler case.

Analysis of MRPC Probe Signal According to Defect Size Variation for S/G Tube in Nuclear Power Plant (원전SG세관의 결함크기에 따른 MRPC 프로브의 신호 해석)

  • Kim, Ji-Ho;Song, Ho-Jun;Lim, Keon-Gyu;Lee, Hyang-beom
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1008-1010
    • /
    • 2005
  • In the examination of steam generator(SG) tube in nuclear power plant, eddy current testing probes play an important role in detecting the defects. Bobbin probe and MRPC probe is usually used for the inspection of SG tube. Bobbin probe is good at high speed inspection, but ability of detection of circumferential defect is very weak. On the contrary MRPC probe, which moves for inspection in the direction of axial and circumferential simultaneously, has very slow inspection speed, but it has excellent detection capability for small cracks, which is hardly detected by bobbin probe. In this paper, for the accurate analysis of experimental ECT signals, construction of MRPC probe signals database according to the variation of defect size is the main purpose. Using 3-D finite element method, ECT signals are analyzed, and signals analysis add according to frequency ingredient. The results, which are analysis and characteristics ion of electromagnetism simulation signals, is databased.

  • PDF

Numerical Analysis of Eddy Current Testing for Tube with Axi-symmetric Defect using Boundary Element Method (경계요소법을 이용한 축대칭 결함을 갖는 도체관에 대한 와전류탐상 수치해석)

  • Seo, Jang-Won;Lee, Hyang-Beom;Yoon, Man-Sik;Lim, Eui-Soo;Chung, Tae-Eon
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.748-750
    • /
    • 2001
  • This paper describes numerical analysis of eddy current testing for tube with axi-symmetric defect using boundary element method. In this ECT(Eddy Current Testing) numerical analysis. BEM and FEM are used to compare their characteristics and results of ECT, respectively BEM is easier than FEM to design geometrically complex domain because in case of BEM, domain is divided into segments or elements, but in case of FEM, domain is divided into small finite triangular or quadrilateral elements. For this reason asymmetry defect is used for this BE numerical analysis. As a result, the similar result can be obtained through both numerical analyses, and BEM can be applied to the numerical analysis of ECT.

  • PDF

Overview of Secondary Neurulation

  • Catala, Martin
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.3
    • /
    • pp.346-358
    • /
    • 2021
  • Secondary neurulation is a morphological process described since the second half of the 19th century; it accounts for the formation of the caudal spinal cord in mammals including humans. A similar process takes place in birds. This form of neurulation is caused by the growth of the tail bud region, the most caudal axial region of the embryo. Experimental work in different animal species leads to questioning dogmas widely disseminated in the medical literature. Thus, it is clearly established that the tail bud is not a mass of undifferentiated pluripotent cells but is made up of a juxtaposition of territories whose fate is different. The lumens of the two tubes generated by the two modes of neurulation are continuous. There seem to be multiple cavities in the human embryo, but discrepancies exist according to the authors. Finally, the tissues that generate the secondary neural tube are initially located in the most superficial layer of the embryo. These cells must undergo internalization to generate the secondary neurectoderm. A defect in internalization could lead to an open neural tube defect that contradicts the dogma that a secondary neurulation defect is closed by definition.

Present Condition and View of Eddy Current Testing Probe for Nuclear Power Plant Steam Generator Tube Examination (원전 증기발생기 세관 검사를 위한 와전류 탐상 프로브의 현황 및 전망)

  • Kim Ji-Ho;Lee Hyang-Beom
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.241-245
    • /
    • 2006
  • In the examination of Steam Generator (SG) tube in Nuclear Power Plant (NPP) Eddy Current Testing (ECT) probes play an Important role in detecting the defects. Bobbin probe and Rotating Pancake Coil (RPC) probe is usually used for the inspection of SG tube. Bobbin probe is good at high speed inspection, but ability of detection of circumferential defect is very weak. On the contrary RPC probe, which moves for inspection in the direction of axial and circumferential simultaneously, has very slow inspection speed, but it was excellent detection capability fur small cracks, which is hardly detected by bobbin probe. Many examinations of SG tube examination of NPP are achieved during short period. Therefore, solution about this must develop probe of new form for examination performance and examination time shortening of other probe. In this paper, analyzed technological present condition of Bob-bin probe and RPC probe been using in Nondestructive Testing (NDT) for SG tube defect detection and Appeared about background theory and view of developed probe newly.

  • PDF

Comparison of Absolute and Differential ECT Signals around Tube Support Plate in Steam Generator

  • Shin, Young-Kil;Lee, Yun-Tai;Song, Myung-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.3
    • /
    • pp.201-208
    • /
    • 2005
  • In this paper, absolute and differential eddy current signals from various defects in the steam generator tube are numerically predicted and their signal slope characteristics are investigated. The signal changes due to frequency increase are also observed. After studying signal patterns from various defects and frequencies, the analysis of mixed defect signals affected by the presence of a ferromagnetic support plate is attempted. For the signal prediction, axisymmetric finite element modeling is used and this leads us to the slope angle analysis of the signal. Results show that differential signals are useful for locating the position of a defect under the support plate, while absolute signals are easy to presume and interpret even though the effect of support plate is mixed. Combined use of these two types of signals will help us accomplish a more reliable inspection.