DOI QR코드

DOI QR Code

Overview of Secondary Neurulation

  • Catala, Martin (Laboratoire de Biologie du developpement, Sorbonne Universite)
  • Received : 2020.12.24
  • Accepted : 2021.01.05
  • Published : 2021.05.01

Abstract

Secondary neurulation is a morphological process described since the second half of the 19th century; it accounts for the formation of the caudal spinal cord in mammals including humans. A similar process takes place in birds. This form of neurulation is caused by the growth of the tail bud region, the most caudal axial region of the embryo. Experimental work in different animal species leads to questioning dogmas widely disseminated in the medical literature. Thus, it is clearly established that the tail bud is not a mass of undifferentiated pluripotent cells but is made up of a juxtaposition of territories whose fate is different. The lumens of the two tubes generated by the two modes of neurulation are continuous. There seem to be multiple cavities in the human embryo, but discrepancies exist according to the authors. Finally, the tissues that generate the secondary neural tube are initially located in the most superficial layer of the embryo. These cells must undergo internalization to generate the secondary neurectoderm. A defect in internalization could lead to an open neural tube defect that contradicts the dogma that a secondary neurulation defect is closed by definition.

Keywords

References

  1. Beck CW, Slack JM : Analysis of the developing Xenopus tail bud reveals separate phases of gene expression during determination and outgrowth. Mech Dev 72 : 41-52, 1998 https://doi.org/10.1016/S0925-4773(98)00015-X
  2. Bijtel JH : Uber die Entwicklung des Schwanzes bei Amphibien. Wilhelm Roux Arch Entwickl Mech Org 125 : 448-486, 1931 https://doi.org/10.1007/BF00576361
  3. Bouldin CM, Manning AJ, Peng YH, Farr GH 3rd, Hung KL, Dong A, et al. : Wnt signaling and tbx16 form a bistable switch to commit bipotential progenitors to mesoderm. Development 142 : 2499-2507, 2015 https://doi.org/10.1242/dev.124024
  4. Braun M : Entwickelungsvorgange am Schwanzende bei einigen Saugethieren mit Berucksichtigungder Verhaltnisse beim Menschen. Arch f Anat u Phys, Anat Abt 6 : 207-241, 1882
  5. Cambray N, Wilson V : Axial progenitors with extensive potency are localised to the mouse chordoneural hinge. Development 129 : 4855-4866, 2002 https://doi.org/10.1242/dev.129.20.4855
  6. Catala M, Teillet MA, De Robertis EM, Le Douarin ML : A spinal cord fate map in the avian embryo: while regressing, Hensen's node lays down the notochord and floor plate thus joining the spinal cord lateral walls. Development 122 : 2599-2610, 1996 https://doi.org/10.1242/dev.122.9.2599
  7. Catala M, Teillet MA, Le Douarin NM : Organization and development of the tail bud analyzed with the quail-chick chimaera system. Mech Dev 51 : 51-65, 1995 https://doi.org/10.1016/0925-4773(95)00350-A
  8. Criley BB : Analysis of the embryonic sources and mechanisms of development of posterior levels of chick neural tubes. J Morphol 128 : 465-501, 1969 https://doi.org/10.1002/jmor.1051280406
  9. Dady A, Havis E, Escriou V, Catala M, Duband JL : Junctional neurulation: a unique developmental program shaping a discrete region of the spinal cord highly susceptible to neural tube defects. J Neurosci 34 : 13208-13221, 2014 https://doi.org/10.1523/JNEUROSCI.1850-14.2014
  10. Davis RL, Kirschner MW : The fate of cells in the tailbud of Xenopus laevis. Development 127 : 255-267, 2000 https://doi.org/10.1242/dev.127.2.255
  11. Gasser E : Der Primitivstreifen bei Vogelembryonen (Huhn und Gans). Schriften der Gesellschaft zur Beforderung der gesammten Naturwissenschaften zu Marburg 2 (Suppl 1) : 1-98, 1879
  12. Gofflot F, Hall M, Morriss-Kay GM : Genetic patterning of the developing mouse tail at the time of posterior neuropore closure. Dev Dyn 210 : 431-445, 1997 https://doi.org/10.1002/(SICI)1097-0177(199712)210:4<431::AID-AJA7>3.0.CO;2-H
  13. Gont LK, Steinbeisser H, Blumberg B, de Robertis EM : Tail formation as a continuation of gastrulation: the multiple cell populations of the Xenopus tailbud derive from the late blastopore lip. Development 119 : 991-1004, 1993 https://doi.org/10.1242/dev.119.4.991
  14. Griffith CM, Wiley MJ : The distribution of cell surface glycoconjugates during mouse secondary neurulation. Anat Embryol (Berl) 180 : 567-575, 1989 https://doi.org/10.1007/BF00300554
  15. Griffith CM, Wiley MJ, Sanders EJ : The vertebrate tail bud: three germ layers from one tissue. Anat Embryol (Berl) 185 : 101-113, 1992 https://doi.org/10.1007/BF00185911
  16. Holmdahl DE : Die zweifache Bildungsweise des zentralen Nervensystem bei den Wirbeltieren. Eine formgeschichtliche und materialgeschichtliche Analyse. Wilhelm Roux Arch Entwickl Mech Org 129 : 206-254, 1933 https://doi.org/10.1007/BF00573686
  17. Hughes AF, Freeman RB : Comparative remarks on the development of the tail cord among higher vertebrates. J Embryol Exp Morphol 32 : 355-363, 1974
  18. Kanki JP, Ho RK : The development of the posterior body in zebrafish. Development 124 : 881-893, 1997 https://doi.org/10.1242/dev.124.4.881
  19. Knezevic V, De Santo R, Mackem S : Continuing organizer function during chick tail development. Development 125 : 1791-1801, 1998 https://doi.org/10.1242/dev.125.10.1791
  20. Kostovic-Knezevic L, Gajovic S, Svajger A : Morphogenetic features in the tail region of the rat embryo. Int J Dev Biol 35 : 191-195, 1991
  21. Kunitomo K : The development and reduction of the tail and of the caudal end of the spinal cord. Contrib Embryol 8 : 161-198, 1918
  22. Lemire RJ : Variations in development of the caudal neural tube in human embryos (horizons XIV-XXI). Teratology 2 : 361-369, 1969 https://doi.org/10.1002/tera.1420020410
  23. Muller F, O'Rahilly R : The development of the human brain, the closure of the caudal neuropore, and the beginning of secondary neurulation at stage 12. Anat Embryol (Berl) 176 : 413-430, 1987 https://doi.org/10.1007/BF00310083
  24. Muller F, O'Rahilly R : The development of the human brain from a closed neural tube at stage 13. Anat Embryol (Berl) 177 : 203-224, 1988 https://doi.org/10.1007/BF00321132
  25. Nievelstein RA, Hartwig NG, Vermeij-Keers C, Valk J : Embryonic development of the mammalian caudal neural tube. Teratology 48 : 21-31, 1993 https://doi.org/10.1002/tera.1420480106
  26. O'Shea KS : Differential deposition of basement membrane components during formation of the caudal neural tube in the mouse embryo. Development 99 : 509-519, 1987 https://doi.org/10.1242/dev.99.4.509
  27. Pasteels J : Etudes sur la gastrulation des vertebres meroblastiques. III. Oiseaux. IV Conclusions generales. Arch Biol 48 : 381-488, 1937
  28. Row RH, Tsotras SR, Goto H, Martin BL : The zebrafish tailbud contains two independent populations of midline progenitor cells that maintain long-term germ layer plasticity and differentiate in response to local signaling cues. Development 143 : 244-254, 2016 https://doi.org/10.1242/dev.129015
  29. Saitsu H, Yamada S, Uwabe C, Ishibashi M, Shiota K : Development of the posterior neural tube in human embryos. Anat Embryol (Berl) 209 : 107-117, 2004 https://doi.org/10.1007/s00429-004-0421-2
  30. Schoenwolf GC : Tail (end) bud contributions to the posterior region of the chick embryo. J Exp Zool 201 : 227-245, 1977 https://doi.org/10.1002/jez.1402010208
  31. Schoenwolf GC : Effects of complete tail bud extirpation on early development of the posterior region of the chick embryo. Anat Rec 192 : 289-295, 1978 https://doi.org/10.1002/ar.1091920209
  32. Schoenwolf GC : Histological and ultrastructural observations of tail bud formation in the chick embryo. Anat Rec 193 : 131-147, 1979 https://doi.org/10.1002/ar.1091930108
  33. Schoenwolf GC : Histological and ultrastructural studies of secondary neurulation in mouse embryos. Am J Anat 169 : 361-376, 1984 https://doi.org/10.1002/aja.1001690402
  34. Schoenwolf GC, Chandler NB, Smith JL : Analysis of the origins and early fates of neural crest cells in caudal regions of avian embryos. Dev Biol 110 : 467-479, 1985 https://doi.org/10.1016/0012-1606(85)90104-6
  35. Schoenwolf GC, Delongo J : Ultrastructure of secondary neurulation in the chick embryo. Am J Anat 158 : 43-63, 1980 https://doi.org/10.1002/aja.1001580106
  36. Schoenwolf GC, Nichols DH : Histological and ultrastructural studies on the origin of caudal neural crest cells in mouse embryos. J Comp Neurol 222 : 496-505, 1984 https://doi.org/10.1002/cne.902220404
  37. Schumacher S : Uber die sogenannte Vervielfachung des Medullarrohres (bzw. des Canalis centralis) bei Embryonen. Z Mikrosk Anat Forsch 10 : 83-109, 1927
  38. Shedden PM, Wiley MJ : Early stages of development in the caudal neural tube of the Golden Syrian hamster (Mesocricetus auratus). Anat Rec 219 : 180-185, 1987 https://doi.org/10.1002/ar.1092190211
  39. Shih J, Fraser SE : Characterizing the zebrafish organizer: microsurgical analysis at the early-shield stage. Development 122 : 1313-1322, 1996 https://doi.org/10.1242/dev.122.4.1313
  40. Shimokita E, Takahashi Y : Secondary neurulation: fate-mapping and gene manipulation of the neural tube in tail bud. Dev Growth Differ 53 : 401-410, 2011 https://doi.org/10.1111/j.1440-169X.2011.01260.x
  41. Taniguchi Y, Kurth T, Weiche S, Reichelt S, Tazaki A, Perike S, et al. : The posterior neural plate in axolotl gives rise to neural tube or turns anteriorly to form somites of the tail and posterior trunk. Dev Biol 422 : 155-170, 2017 https://doi.org/10.1016/j.ydbio.2016.12.023
  42. Tucker AS, Slack JM : The Xenopus laevis tail-forming region. Development 121 : 249-262, 1995 https://doi.org/10.1242/dev.121.1.249
  43. Wilson V, Beddington RS : Cell fate and morphogenetic movement in the late mouse primitive streak. Mech Dev 55 : 79-89, 1996 https://doi.org/10.1016/0925-4773(95)00493-9
  44. Wilson V, Olivera-Martinez I, Storey KG : Stem cells, signals and vertebrate body axis extension. Development 136 : 1591-1604, 2009 https://doi.org/10.1242/dev.021246
  45. Yang HJ, Lee DH, Lee YJ, Chi JG, Lee JY, Phi JH, et al. : Secondary neurulation of human embryos: morphological changes and the expression of neuronal antigens. Childs Nerv Syst 30 : 73-82, 2014 https://doi.org/10.1007/s00381-013-2192-7
  46. Zwilling E : Restitution of the tail in the early chick embryo. J Exp Zool 91 : 453-463, 1942 https://doi.org/10.1002/jez.1400910309