Browse > Article
http://dx.doi.org/10.3340/jkns.2020.0362

Overview of Secondary Neurulation  

Catala, Martin (Laboratoire de Biologie du developpement, Sorbonne Universite)
Publication Information
Journal of Korean Neurosurgical Society / v.64, no.3, 2021 , pp. 346-358 More about this Journal
Abstract
Secondary neurulation is a morphological process described since the second half of the 19th century; it accounts for the formation of the caudal spinal cord in mammals including humans. A similar process takes place in birds. This form of neurulation is caused by the growth of the tail bud region, the most caudal axial region of the embryo. Experimental work in different animal species leads to questioning dogmas widely disseminated in the medical literature. Thus, it is clearly established that the tail bud is not a mass of undifferentiated pluripotent cells but is made up of a juxtaposition of territories whose fate is different. The lumens of the two tubes generated by the two modes of neurulation are continuous. There seem to be multiple cavities in the human embryo, but discrepancies exist according to the authors. Finally, the tissues that generate the secondary neural tube are initially located in the most superficial layer of the embryo. These cells must undergo internalization to generate the secondary neurectoderm. A defect in internalization could lead to an open neural tube defect that contradicts the dogma that a secondary neurulation defect is closed by definition.
Keywords
Secondary neurulation; Tail bud; Cavitation; Blastema; Caudal spinal cord;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kunitomo K : The development and reduction of the tail and of the caudal end of the spinal cord. Contrib Embryol 8 : 161-198, 1918
2 Lemire RJ : Variations in development of the caudal neural tube in human embryos (horizons XIV-XXI). Teratology 2 : 361-369, 1969   DOI
3 Muller F, O'Rahilly R : The development of the human brain, the closure of the caudal neuropore, and the beginning of secondary neurulation at stage 12. Anat Embryol (Berl) 176 : 413-430, 1987   DOI
4 Muller F, O'Rahilly R : The development of the human brain from a closed neural tube at stage 13. Anat Embryol (Berl) 177 : 203-224, 1988   DOI
5 Nievelstein RA, Hartwig NG, Vermeij-Keers C, Valk J : Embryonic development of the mammalian caudal neural tube. Teratology 48 : 21-31, 1993   DOI
6 O'Shea KS : Differential deposition of basement membrane components during formation of the caudal neural tube in the mouse embryo. Development 99 : 509-519, 1987   DOI
7 Pasteels J : Etudes sur la gastrulation des vertebres meroblastiques. III. Oiseaux. IV Conclusions generales. Arch Biol 48 : 381-488, 1937
8 Row RH, Tsotras SR, Goto H, Martin BL : The zebrafish tailbud contains two independent populations of midline progenitor cells that maintain long-term germ layer plasticity and differentiate in response to local signaling cues. Development 143 : 244-254, 2016   DOI
9 Saitsu H, Yamada S, Uwabe C, Ishibashi M, Shiota K : Development of the posterior neural tube in human embryos. Anat Embryol (Berl) 209 : 107-117, 2004   DOI
10 Criley BB : Analysis of the embryonic sources and mechanisms of development of posterior levels of chick neural tubes. J Morphol 128 : 465-501, 1969   DOI
11 Bouldin CM, Manning AJ, Peng YH, Farr GH 3rd, Hung KL, Dong A, et al. : Wnt signaling and tbx16 form a bistable switch to commit bipotential progenitors to mesoderm. Development 142 : 2499-2507, 2015   DOI
12 Braun M : Entwickelungsvorgange am Schwanzende bei einigen Saugethieren mit Berucksichtigungder Verhaltnisse beim Menschen. Arch f Anat u Phys, Anat Abt 6 : 207-241, 1882
13 Dady A, Havis E, Escriou V, Catala M, Duband JL : Junctional neurulation: a unique developmental program shaping a discrete region of the spinal cord highly susceptible to neural tube defects. J Neurosci 34 : 13208-13221, 2014   DOI
14 Gofflot F, Hall M, Morriss-Kay GM : Genetic patterning of the developing mouse tail at the time of posterior neuropore closure. Dev Dyn 210 : 431-445, 1997   DOI
15 Cambray N, Wilson V : Axial progenitors with extensive potency are localised to the mouse chordoneural hinge. Development 129 : 4855-4866, 2002   DOI
16 Catala M, Teillet MA, De Robertis EM, Le Douarin ML : A spinal cord fate map in the avian embryo: while regressing, Hensen's node lays down the notochord and floor plate thus joining the spinal cord lateral walls. Development 122 : 2599-2610, 1996   DOI
17 Catala M, Teillet MA, Le Douarin NM : Organization and development of the tail bud analyzed with the quail-chick chimaera system. Mech Dev 51 : 51-65, 1995   DOI
18 Davis RL, Kirschner MW : The fate of cells in the tailbud of Xenopus laevis. Development 127 : 255-267, 2000   DOI
19 Gasser E : Der Primitivstreifen bei Vogelembryonen (Huhn und Gans). Schriften der Gesellschaft zur Beforderung der gesammten Naturwissenschaften zu Marburg 2 (Suppl 1) : 1-98, 1879
20 Schoenwolf GC : Tail (end) bud contributions to the posterior region of the chick embryo. J Exp Zool 201 : 227-245, 1977   DOI
21 Schoenwolf GC : Effects of complete tail bud extirpation on early development of the posterior region of the chick embryo. Anat Rec 192 : 289-295, 1978   DOI
22 Schoenwolf GC : Histological and ultrastructural observations of tail bud formation in the chick embryo. Anat Rec 193 : 131-147, 1979   DOI
23 Schoenwolf GC : Histological and ultrastructural studies of secondary neurulation in mouse embryos. Am J Anat 169 : 361-376, 1984   DOI
24 Bijtel JH : Uber die Entwicklung des Schwanzes bei Amphibien. Wilhelm Roux Arch Entwickl Mech Org 125 : 448-486, 1931   DOI
25 Gont LK, Steinbeisser H, Blumberg B, de Robertis EM : Tail formation as a continuation of gastrulation: the multiple cell populations of the Xenopus tailbud derive from the late blastopore lip. Development 119 : 991-1004, 1993   DOI
26 Griffith CM, Wiley MJ : The distribution of cell surface glycoconjugates during mouse secondary neurulation. Anat Embryol (Berl) 180 : 567-575, 1989   DOI
27 Beck CW, Slack JM : Analysis of the developing Xenopus tail bud reveals separate phases of gene expression during determination and outgrowth. Mech Dev 72 : 41-52, 1998   DOI
28 Griffith CM, Wiley MJ, Sanders EJ : The vertebrate tail bud: three germ layers from one tissue. Anat Embryol (Berl) 185 : 101-113, 1992   DOI
29 Holmdahl DE : Die zweifache Bildungsweise des zentralen Nervensystem bei den Wirbeltieren. Eine formgeschichtliche und materialgeschichtliche Analyse. Wilhelm Roux Arch Entwickl Mech Org 129 : 206-254, 1933   DOI
30 Schoenwolf GC, Delongo J : Ultrastructure of secondary neurulation in the chick embryo. Am J Anat 158 : 43-63, 1980   DOI
31 Schoenwolf GC, Nichols DH : Histological and ultrastructural studies on the origin of caudal neural crest cells in mouse embryos. J Comp Neurol 222 : 496-505, 1984   DOI
32 Wilson V, Beddington RS : Cell fate and morphogenetic movement in the late mouse primitive streak. Mech Dev 55 : 79-89, 1996   DOI
33 Schumacher S : Uber die sogenannte Vervielfachung des Medullarrohres (bzw. des Canalis centralis) bei Embryonen. Z Mikrosk Anat Forsch 10 : 83-109, 1927
34 Shedden PM, Wiley MJ : Early stages of development in the caudal neural tube of the Golden Syrian hamster (Mesocricetus auratus). Anat Rec 219 : 180-185, 1987   DOI
35 Schoenwolf GC, Chandler NB, Smith JL : Analysis of the origins and early fates of neural crest cells in caudal regions of avian embryos. Dev Biol 110 : 467-479, 1985   DOI
36 Kostovic-Knezevic L, Gajovic S, Svajger A : Morphogenetic features in the tail region of the rat embryo. Int J Dev Biol 35 : 191-195, 1991
37 Shimokita E, Takahashi Y : Secondary neurulation: fate-mapping and gene manipulation of the neural tube in tail bud. Dev Growth Differ 53 : 401-410, 2011   DOI
38 Taniguchi Y, Kurth T, Weiche S, Reichelt S, Tazaki A, Perike S, et al. : The posterior neural plate in axolotl gives rise to neural tube or turns anteriorly to form somites of the tail and posterior trunk. Dev Biol 422 : 155-170, 2017   DOI
39 Tucker AS, Slack JM : The Xenopus laevis tail-forming region. Development 121 : 249-262, 1995   DOI
40 Wilson V, Olivera-Martinez I, Storey KG : Stem cells, signals and vertebrate body axis extension. Development 136 : 1591-1604, 2009   DOI
41 Yang HJ, Lee DH, Lee YJ, Chi JG, Lee JY, Phi JH, et al. : Secondary neurulation of human embryos: morphological changes and the expression of neuronal antigens. Childs Nerv Syst 30 : 73-82, 2014   DOI
42 Zwilling E : Restitution of the tail in the early chick embryo. J Exp Zool 91 : 453-463, 1942   DOI
43 Hughes AF, Freeman RB : Comparative remarks on the development of the tail cord among higher vertebrates. J Embryol Exp Morphol 32 : 355-363, 1974
44 Shih J, Fraser SE : Characterizing the zebrafish organizer: microsurgical analysis at the early-shield stage. Development 122 : 1313-1322, 1996   DOI
45 Kanki JP, Ho RK : The development of the posterior body in zebrafish. Development 124 : 881-893, 1997   DOI
46 Knezevic V, De Santo R, Mackem S : Continuing organizer function during chick tail development. Development 125 : 1791-1801, 1998   DOI