• Title/Summary/Keyword: Truss요소

Search Result 140, Processing Time 0.022 seconds

Evaluation of Limit Strength for Steel Cable-Stayed Bridgesusing Various Cable Elements (다양한 케이블 요소를 이용한 강사장교의 극한강도 평가)

  • Song, Weon-Keun;Rhee, Jong Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.115-121
    • /
    • 2006
  • This paper deals with the influence of behavior of a variety of cable elements on the limit strength of steel cable-stayed bridges. The softening plastic-hinge model, which is represented in this study for the limit strength evaluation of the example bridge, considers both geometric and material nonlinearites. Geometric nonlinearity of beam-column members are accounted by using stability function, and material nonlinearity - by using CRC tangent modulus and parabolic function. Cable sag effect is considered for cable members. The result of this study shows that the limit strength of the example bridge using the equivalent of elasticity for truss straight elements is smaller than those using the cable or the catenary elements.

Case Study on the Explosive Demolition of Steel Truss Bridge using Charge Container for Cutting Structural Steel (강재 절단용 장약용기를 이용한 철골 교량 발파해체 시공사례)

  • Park, Hoon;Suk, Chul-Gi;Noh, You-Song
    • Explosives and Blasting
    • /
    • v.36 no.1
    • /
    • pp.20-33
    • /
    • 2018
  • A locally damaged structure is a structure that cannot be reused due to having parts that have lost their structural function as a result of abnormal load across the interior or exterior of the structure. The causes of the abnormal load occurrences can be classified into natural disaster and artificial disaster. Locally damaged structures caused by this abnormal load have risk factors that may lead to the possibility of additional secondary collapses, so such structures require immediate and complete dismantling. The case presented in this study involves the application of explosive demolition to a steel truss structured bridge in the Philippines that was damaged due to construction failures and the hurricane. Although shaped charges were needed in explosive demolitions, difficulties in locally obtaining such material. So, we made a charge container to charging of emulsion explosive during the explosive demolition. The explosive demolition resulted in the vertical free fall of the mid-section of the bridge and the free fall rotating of the both end section of the bridge. The neighboring posts and bridge piers did not show signs of damages, while post-demolition fragmentation of removed parts was found to be satisfactory.

Study on the Scientific Functional Investigation of Steel Space Truss Structures by using Technology Tree Methodology (기술트리를 이용한 입체트러스 강구조물의 과학적 기능분석 방법론에 관한 연구)

  • Lee, Dong Kyu;Kim, Do Hwan;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.4
    • /
    • pp.321-333
    • /
    • 2013
  • This study presents a practice of a scientific methodology, i.e., technology tree to describe hierarchies of functions and technologies of research projects. In this study functional developments of a well-known steel space frame truss are dealt with for an application of the technology tree process to execute the maintenance of road tunnels without blocking vehicles. It is verified that established results of technology tree process can be linked to a proof process of revealed functions and component technologies such as reference works and structural analyses. In the future the technology tree methodology can be extendedly used for an effective tool setting up research plans and developing integrated technologies of a specific item such as a steel structure.

Evaluation of Impact Factor on Pipe-truss Bridges According to Driving Bimodal Tram (저상굴절차량의 주행에 따른 파이프트러스교의 충격계수 산정)

  • Kim, Hee-Ju;Jun, Myung-Il;Hwang, Won-Sup
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.45-52
    • /
    • 2010
  • This paper estimated the impact factor using the finite element program to confirm the dynamic behavior of new type of bridges constructed by introduction of new vehicles and compared the design criteria about the impact factor applied to domestic as well as each country. The study estimated effects of the impact factor according to pipe truss types modeled as respectively 34m, 44m, 54m and span length. The vehicle models are vehicle for bimodal tram of two axis and three axis which passes on actual bridge and dump truck model proposed by Park Young suk(1997). Each vehicle is estimated the impact factor according to velocity from 10 to 100(km/h) and examined. Also, the study investigated and compared the design regulation of domestic and a foreign country based on the impact factor on span center calculated in accordance with vehicle and span length.

A study on the optimal sizing and topology design for Truss/Beam structures using a genetic algorithm (유전자 알고리듬을 이용한 트러스/보 구조물의 기하학적 치수 및 토폴로지 최적설계에 관한 연구)

  • 박종권;성활경
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.89-97
    • /
    • 1997
  • A genetic algorithm (GA) is a stochastic direct search strategy that mimics the process of genetic evolution. The GA applied herein works on a population of structural designs at any one time, and uses a structured information exchange based on the principles of natural selection and wurvival of the fittest to recombine the most desirable features of the designs over a sequence of generations until the process converges to a "maximum fitness" design. Principles of genetics are adapted into a search procedure for structural optimization. The methods consist of three genetics operations mainly named selection, cross- over and mutation. In this study, a method of finding the optimum topology of truss/beam structure is pro- posed by using the GA. In order to use GA in the optimum topology problem, chromosomes to FEM elements are assigned, and a penalty function is used to include constraints into fitness function. The results show that the GA has the potential to be an effective tool for the optimal design of structures accounting for sizing, geometrical and topological variables.variables.

  • PDF

Analysis of Compressive Characteristics of Wire-woven Bulk Kagome (Wire-woven Bulk Kagome의 압축 특성 분석)

  • Lee, Byung-Kon;Choi, Ji-Eun;Kang, Ki-Ju;Jeon, In-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.1
    • /
    • pp.70-76
    • /
    • 2008
  • Periodic cellular metals (PCMs) are actively being investigated because of their excellent specific strength and stiffness, and multi-functionality such as a heat disperse structure bearing external loading. The Kagome truss PCM has been proved that it has higher resistance to plastic buckling and lower anisotropy than other truss PCMs. In this paper, the out-of-plane compressive responses of the WBK specimens have been measured, theoretically predicted and numerically analyzed. Three specimens of two-layered WBK are fabricated and tested for measuring the responses. The peak stress of compressive behavior and effective elastic modulus are predicted based on the equilibrium equation and elastic energy conservation. Moreover, the structure of the specimen is modeled using the commercial mesh generation code, PATRAN and the finite element analysis for the model under the compression is carried out using the commercial FE code, ABAQUS. Finally, the obtained results are compared with each other to analyze the compressive characteristics of Wire-woven Bulk Kagome (WBK).

Study on Ultimate Behavior of Steel Transmission Tower with Residual Stress and Initial Imperfection (잔류응력과 초기변형을 고려한 송전철탑의 비선형 극한거동에 관한 해석적 연구)

  • Chang, Jin Won;Kim, Seung Jun;Park, Jong Sup;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.3
    • /
    • pp.421-435
    • /
    • 2008
  • This paper presents an investigation on the ultimate behavior of a transmission tower using nonlinear analyses inconsideration of residual stress and initial imperfection. Main members, such as main post, horizontal member and diagonal member of the transmission tower were modeled using beam element. Moreover, submembers of the transmission tower were modeled using truss element. ABAQUS (2004) program was used to perform finite element analyses. Initial condition options of the ABAQUS program considering initial stress and imperfection were used in this study. Before performing the analysis of the total transmission tower, simple angle section models using beam or plate/shell element w ere investigated to verify the appropriateness of ABAQUS analysis models and options. According to the verification results, the beam element was used for nonlinear analyses of the transmission tower. From nonlinear analyses results, buckling failure was in the main member of the leg part because of ${P-{\triangle}}$ effect at that point. Also, this paper includes significant results to define real structural failure modes and quantitative values. This study should be used in the development of a reasonable and economic design method for transmission towers.

Hot Spot Stress of Concrete-filled Circular Hollow Section N-joints Subjected to Axial Loads (축하중을 받는 콘크리트 충전 원형 강관 N형 이음부의 핫스폿 응력 특성)

  • Kim, In-Gyu;Chung, Chul-Hun;Kim, Young-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.113-120
    • /
    • 2010
  • The use of Concrete filled circular hollow steel section (CFCHS) members in bridge design is a relatively new concept. The most important part of the design and durability of such structures is the design and the construction of the joints. In the design of recently constructed steel-concrete composite bridges using CFCHS truss girders for the main load carrying structure, the fatigue verification of the tubular spatial truss joints was a main issue. Welded CFCHS joints are very sensitive to fatigue because the geometric discontinuities of the welds lead to a high stress concentration. New research done on the fatigue behaviour of such joints has focused on CFCHS N-joints, directly welded, with finite element analysis method. A commercial software, ABAQUS, is adopted to perform the finite element analysis on the N-joints. This paper is main focused on these topics, including hot spot stress.

Structural Optimization Using Stochastic Finite Element Method (확률 유한요소법을 사용한 구조물 최적설계)

  • 임오강;이병우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.1920-1929
    • /
    • 1994
  • The stochastic finite element method(SFEM) based structural optimal design is presented. Random system response including uncertainties for the design variable is calculated with first order perturbation method. A method for calculating the sensitivity coefficients is developed using the equilibrium equation and first-order perturbed equation. Numerical results are presented for a truss, frame and plate structures with displacement and stress constraints. The sensitivity calculation proposed here is compared with finite difference method. A nonlinear programming technique is used to solve the problem. The procedure is easily incorporated with existing deterministic structural optimization.

A Study on the Inelastic Analysis of Planar Frames Subjected to Cyclic Loads Using Direct Method (직접해석법에 의한 반복하중을 받는 평면골조의 비탄성해석에 관한 연구)

  • 정일영;이상호;윤태호
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.65-74
    • /
    • 1995
  • Direct method developed for the inelastic analysis of planar frames subjected to monotonic loads is extended to cyclic loads. Two frame elements for Direct Method(inelastic truss and inelastic beam) are developed. The accuracy and reliability of the preposed method is verified by comparing the analysis results of example with step-by-step analysis. Direct Method is superior to Step-by-step analysis in view of reliability of solution and analysis cost.

  • PDF