• Title/Summary/Keyword: Triple-Mode

Search Result 106, Processing Time 0.027 seconds

A High-Efficiency, Robust Temperature/voltage Variation, Triple-mode DC-DC Converter (고효율, Temperature/voltage 변화에 둔감한 Triple-mode CMOS DC-DC Converter)

  • Lim, Ji-Hoon;Ha, Jong-Chan;Kim, Sang-Kook;Wee, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.6
    • /
    • pp.1-9
    • /
    • 2008
  • This paper suggests the triple-mode CMOS DC-DC converter that has temperature/voltage variation compensation techniques. The proposed triple-mode CMOS DC-DC converter is used to generate constant or variable voltages of 0.6-2.2V within battery source range of 3.3-5.5V. Also, it supports triple modes, which include Pulse Width Modulator (PWM) mode, Pulse Frequency Modulator (PFM) mode and Low Drop-Out (LDO) mode. Moreover, it uses 1MHz low-power CMOS ring oscillator that will compensate malfunction of chip in temperature/voltage variation condition. The proposed triple-mode CMOS DC-DC converter, which generates output voltages of 0.6-2.2V with an input voltage sources of 3.3-5.5V, exhibits the maximum output ripple voltage of below 10mV at PWM mode, 15mV at PFM mode and 4mV at LDO mode. And the proposed converter has maximum efficiency of 93% at PWM mode. Even at $-25{\sim}80^{\circ}C$ temperature variations, it has kept the output voltage level within 0.8% at PWM/PFM/LDO modes. For the verification of proposed triple-mode CMOS DC-DC converter, the simulations are carried out with $0.35{\mu}m$ CMOS technology and chip test is carried out.

Triple-Mode Characteristics of Cylindrical Cavity Loading a Cylindrical Dielectric Resonator

  • Lee, Seung-Mo;Kim, Cha-Man;Park, Jong-Chul;Kim, In-Ryeol;Oh, Soon-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.6
    • /
    • pp.630-636
    • /
    • 2016
  • In this paper, a novel triple-mode cavity structure, designed for compactness and operating at 850 MHz, is analyzed. A cylindrical dielectric resonator is loaded into a metallic cylindrical cavity. Previous study has been focused on the analysis of the cylindrical dielectric resonator, but in this paper, the effect of the cylindrical metallic cavity has been analyzed. Enclosing the dielectric resonator inside the metallic cavity increases the resonant frequency of the dielectric resonator; however, this increases the quality factor and introduces the possibility of installing coupling screws. The principle of generation of triple-mode was investigated by parametric analysis. The generated triple-mode is TE011 mode and two orthogonally generated HEM121 modes. By adjusting the radius of the dielectric resonator, the height of the dielectric resonator, or the radius of the cylindrical metallic cavity, three modes could be coincided. However, the height of the metallic cavity keeps three modes separated. The mode characteristics of the proposed cavity are analyzed using a full-wave electromagnetic (EM) simulation. The proposed triple-mode cavity could be developed to triple-mode filter using a coupling screw, and the commercial application for the miniaturized filter below 1 GHz could be expected.

Compact Triple-Mode Resonator and Triple-Mode Filter Design (소형의 삼중 모드 공진기와 삼중 모드 필터 설계)

  • Lee, Ja-Hyeon;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.4
    • /
    • pp.447-452
    • /
    • 2011
  • In this paper, we present a compact triple-mode resonator. The resonator itself can provide three transmission poles and one transmission zero. The resonance condition of each mode is analyzed theoretically, and the transmission zero is generated by open stub. Using this proposed resonator, a compact three pole bandpass filter for 2.4 GHz WLAN application with one transmission zero is designed and fabricated. The fabricated triple-mode filter shows 3 dB bandwidth of 15.8 % with the center frequency 2.4 GHz and less then 1.17 dB in 2.4~2.5 GHz passband. The size of fabricated triple-mode filter including the feed lines is 15.9 mm${\times}$9.7 mm and very compact compared with previous reported triple-mode filter.

Design of a Triple-Mode Bandpass Filter Using a Closed Loop Resonator

  • Myung, Jae-Yoon;Yun, Sang-Won
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.2
    • /
    • pp.86-90
    • /
    • 2017
  • In this study, a novel third-order bandpass filter, which is based on a rectangular closed loop resonator, is presented. By adding a series resonator to the conventional loop resonator, the resonator's even resonant mode is split into two modes, while the odd resonant mode is not affected. Therefore, by varying the values of the series resonator elements, the resonant frequencies of two even modes can be determined independent of the odd-mode resonant frequency. In the proposed triple-mode filter design, instead of using a lumped series resonator, a T-shaped transmission line is coupled to the resonator via a small gap. To verify the design method, a filter is designed at 2.4 GHz with a bandwidth of 100 MHz. The improved performances of the proposed triple-mode filter are compared with those of the conventional dual mode filter.

An Enhanced Skirt Characteristics Triple-Mode Filter

  • Lee, Ja-Hyeon;Nam, Hun;Lim, Yeong-Seog
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.3
    • /
    • pp.210-215
    • /
    • 2012
  • This paper presents a compact microstrip triple-mode filter with enhanced skirt characteristics. The presented triple-mode filter configuration supports three transmission poles and three transmission zeros within the nearby passband. Two of transmission zeros are generated by a triple-mode resonator itself, and the third one is generated by small cross-couplings between the I/O ports. Each resonance condition and the transmission zero generation conditions are analyzed using an equivalent circuit. The bandpass filter is designed for a 2.4 GHz WLAN. The filter was fabricated with a relative dielectic constant of 3.5 and a thickness of 0.76 mm. The fabricated filter has a small size ($7.9mm{\times}7.2mm$, i.e., $0.107{\lambda}_g{\times}0.098{\lambda}_g$, where ${\lambda}_g$ is guided wavelength at a center frequency) and shows high performing skirt characteristics.

2-state 5-pole bandpass filter consisted of dual and tripe-mode cavity resonator (이중 및 삼중모드 공동 공진기로 구성된 2단 5-Pole 대역통과 필터)

  • 김상철;홍의석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.6
    • /
    • pp.1251-1258
    • /
    • 1997
  • Generally, it is very important to study selective coupling between cavities of the filter structure using multimode cavity resonator. In this paper, we have manufactured 5-pole bandpass filter(BPF) using dual and triple-mode cavity resonator. To do so, we have derived the formulas for coupling coefficient about coupling between TE-modes from TM/TE-mode's tangential and lognitudinal field intensities each other. To implement the Chebyshev response, the intercabity slot combining dual-mode and triple-mode is designed to couple one H-field of TE-mode parallel to slot plate. In this paper, specially it is derived the formulas for T $E_{11p}$-mode from TE-modes, and determined after obtaining location and size of intercabity slot from the equation. In this ppaer, based on this result, we designed and implmented teh bandpass filter operated at the center frequency of 14.5GHz with a Chebyshev response. For the manufactured cavity filter, dual-mode and triple-mode cavity are resonted by two orthogonal T $E_{113}$-modes, and by two orthogonal T $E_{113}$-modes and one T $M_{012}$-mode, respecitively. The 2-stage 5-pole BPF proposed in this paper has the insertion loss of -2.32dB, the reflection loss of -15dB in the passband, and the out-or-rejection of -67dB.

  • PDF

Design of Frequency-Tunable Microstrip Filter Using Triple-Mode Substrate Integrated Waveguide (SIW) Structure (3중모드 기판집적 도파관(SIW) 구조를 이용한 주파수 가변 마이크로스트립 필터 설계)

  • Kyeong-Min Na;Dong-Woo Kim;Soon-soo Oh
    • Journal of IKEEE
    • /
    • v.28 no.1
    • /
    • pp.72-77
    • /
    • 2024
  • In this paper, a triple-mode frequency-tunable filter is proposed to meet the recent demands of various frequency bands of mobile communication services. This filter has a tunable structure that can adjust the resonance frequency using a variable capacitor. To improve the quality factor, a SIW(Substrate Integrated Waveguide) structure was introduced and a structure that induces three resonance modes was implemented through a circular hole located in the center. The change in electric field distribution and resonance frequency by the variable capacitor was simulated using HFSS, and the change in electric field distribution and resonance frequency of Triple Mode mode was confirmed.

Implementation of a modified TE$_{113}$/TM$_{012}$ triple-mode waveguide bandpass filter (변형된 TE$_{113}$/TM$_{012}$ 삼중모드 도파관 대역통과여파기의 구현)

  • 정근욱;이재현;박광량;김재명
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.11
    • /
    • pp.70-77
    • /
    • 1996
  • In this paper, a modifed TE$_{113}$/TM$_{012}$ triple-mode bandpass filter is implemented by using a modified inter-cavity iris in which the number of slots are reduced upto 50%. In a coventioanl iris two prirs of slot apertures are used to independently couple three resonant modes between two adjacent cavities. However, if transverse magnetic polarizability of a pair of veritcal slot apertures is used to control weak horizontal TE$_{h}$-TE$_{h}$ mode coupling, the width of novel iris slots would substitute for the slot length of the conventional iris, causing to eliminate the horizontal slot apertures. The measured data of two filters, which are the modified filter and ocnventional one, are compared. Experimental result shows that the characteristics of the novel triple-mode filter matches well that of the conventional filter.

  • PDF

Evaluation of Analytical Vibration Characteristics for Triple Cylindrical Shells Filled with Fluid (유체로 채워진 삼중 원통셸의 해석적 진동 특성 평가)

  • 지용관;이영신
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.2
    • /
    • pp.150-160
    • /
    • 2002
  • The free vibration characteristics of the triple cylindrical shells filled with fluid are investigated. The triple cylindrical shells are filled with compressible fluid. The boundary condition is clamped at both ends. Analytical method is developed to evaluate natural frequencies of triple cylindrical shells using Sanders' shell theory and courier series expansion by Stokes' transformation. Their results are compared with those of finite element method to verify the validation of the method developed. The modal characteristics of shells filled with fluid at region 1, 2 and 3 are evaluated.

Control Technique of Triple-Active-Bridge Converter and Its Effective Controller Design Based on Small Signal Model for Islanding Mode Operation (단독운전 모드 동작에서의 Triple-Active-Bridge 컨버터 제어 기법 및 소신호 모델을 기반으로 한 제어기 설계)

  • Jeon, Chano;Heo, Kyoung-Wook;Ryu, Myung-Hyo;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.3
    • /
    • pp.192-199
    • /
    • 2022
  • In DC distribution systems, a TAB converter employing multiple transformers is one of the most widely used topologies due to its high power density, modularizability, and cost-effectiveness. However, the conventional control technique for a grid-connected mode in the TAB converter cannot maintain its reliability for an islanding mode under a blackout situation. In this paper, the islanding mode control technique is proposed to solve this issue. To verify the relative stability and dynamic characteristics of the control technique, small-signal models of both the grid connected and the islanding mode are derived. Based on the small-signal models, PI controllers are designed to provide suitable power control. The proposed control technique, the accuracy of small-signal models, and the performance of the controllers are verified by simulations and experiments with a 1-kW prototype TAB converter.