• Title/Summary/Keyword: Transverse Motion

Search Result 372, Processing Time 0.024 seconds

Stability Analysis of Transverse Vibration of a Spinning Disk with Speed Fluctuation (속도변동성분을 갖는 회전디스크의 횡진동 안정성 해석)

  • 신응수;이기녕;신태명;김옥현
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.21-28
    • /
    • 2002
  • This paper intends to investigate the effects of speed fluctuation caused by the cogging torque in permanent magnetic motors on the stability of the transverse vibration for a spinning disk. Based on the Kirchhoff\`s plate theory and the assumed mode methods, a set of discretized equations of motion were derived for an annular disk rotating with a harmonically varying speed. Then, a perturbation method using the multiple time scales was employed and stability boundaries were determined explicitly in terms of the magnitude and frequency of speed fluctuation, a nominal sped and the modal characteristics of the disk. It is found that parametric resonance occurs at several speed ranges and a single mode or a combination of two modes are involved to cause instability. It is also observed that unstable regions become broadened as the spinning speed increases or two modes are combined in parametric instability. As numerical simulations, stability analysis of a conventional CD-ROM drive was performed. Results of this work can e used as guidelines for motor design and operations with low vibration.

Influence of a Moving Mass on Dynamic Behavior of a Simply Supported Pipe Conveying Fluid (단순지지 송수관의 동특성에 미치는 이동질량의 영향)

  • 윤한익
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.135-140
    • /
    • 2001
  • A simply supported pipe conveying fluid and a moving mass upon it constitute a vibrational system. The equation of motion is derived by using Lagrange's equation. The influence of the velocity and the inertia force of a moving mass and the velocities of fluid flow in the pipe have been studied on the dynamic behavior of a simply supported pipe by numerical method. The velocities of fluid low are considered within its critical values of the simply supported pipe without a moving mass upon it. Their coupling effects on the transverse vibration of a simply supported pipe are inspected too. as the velocity of a moving mass increases, the deflection of midspan of a simply supported pipe conveying fluid is increased and the frequency of transverse vibration of the pipe is not varied. Increasing of the velocity of fluid flow makes the frequency of transverse vibration of the simply supported pipe conveying fluid decrease and the deflection of midspan of the pipe increase. The deflection of the simply supported pipe conveying fluid is increased by a coupling of the moving mass and the velocities of a moving mass and fluid flow.

  • PDF

Development of Transverse Bed Slope Model for Nonuniform Sand Bed at River Bend (만곡부 혼합입경 하상횡경사 모형의 개발)

  • 최종인;고재웅
    • Water for future
    • /
    • v.29 no.4
    • /
    • pp.177-186
    • /
    • 1996
  • The analytical approach to determine transverse sand bed slope at river bend are based on two phases that the flow is considered as fully developed flow and the bed is fluvial having bed load. All existing methods are theoretically derived from the initiation of motion of the particles at river bed. They assume that the Shields parameter has a constant value of 0.06. In this study, the variability of Shields parameter due to the differences of shape of grain size distribution is considered. Therefore the parameter is not a constant, 0.06, but depends on the shape of the grain size distribution. This result gives good agreement to estimate transverse bed slope with actual field data at river bend.

  • PDF

Decoupling of Thrust Force and Levitation Force of Transverse Flux Linear Induction Motor by the Active Compensation of Magnetic force across the Air-Gap (공극력의 능동적 보상을 통한 횡자속 선형 유도 구동기의 추력과 부상력의 비연성화)

  • 정광석;백윤수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.91-98
    • /
    • 2004
  • TFLIM(Transverse Flux Linear Induction Motor), making its closed magnetic path with the direction of the traveling field orthogonal, had been developed to decrease an edge effect of the general induction motor. To control the levitation force and the thrust force on the secondary part of TFLIM independently, the various methodologies have been presented. When we try to achieve the independent control using only the multi-phase inputs assigned in the stator coils as an approach, in which condition we can minimize the coupling effect between two forces\ulcorner In this paper, we show the qualitative influence of a slip frequency, an ac magnitude, a dc offset superposed in the ac power, and a major parameter of TFLIM on the couple through the computer simulation. And to realize the independent motions between levitation and thrust motion without any auxiliary means fur isolation of the secondary part of TFLIM, the decouple compensator is suggested, including the experimental results.

Transverse Wind Velocity Recorded in Spiral-Shell Pattern

  • Hyosun Kim
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.149-157
    • /
    • 2023
  • The propagation speed of a circumstellar pattern revealed in the plane of the sky is often assumed to represent the expansion speed of the wind matter ejected from a post-main-sequence star at the center. We point out that the often-adopted isotropic wind assumption and the binary hypothesis as the underlying origin for the circumstellar pattern in the shape of multilayered shells are, however, mutually incompatible. We revisit the hydrodynamic models for spiral-shell patterns induced by the orbital motion of a hypothesized binary, of which one star is losing mass at a high rate. The distributions of transverse wind velocities as a function of position angle in the plane of the sky are explored along viewing directions. The variation of the transverse wind velocity is as large as half the average wind velocity over the entire three dimensional domain in the simulated models investigated in this work. The directional dependence of the wind velocity is indicative of the overall morphology of the circumstellar material, implying that kinematic information is an important ingredient in modeling the snapshot monitoring (often in the optical and near-infrared) or the spectral imaging observations for molecular line emissions.

A review on measuring cervical range of motion using an inertial measurement unit (관성측정장치를 이용한 경추 가동범위 측정에 대한 고찰)

  • Yim, Juhyuk;Kim, Hyunho;Park, Young-Jae;Park, Young-Bae
    • The Journal of Korean Medicine
    • /
    • v.38 no.1
    • /
    • pp.56-71
    • /
    • 2017
  • Objectives: The purpose of this study was to review the article using an IMU(Inertial Measurement Unit) for measuring the cervical range of motion and to evaluate the feasibility of using an IMU for measuring the cervical range of motion. Method: Scopus was used to search for the articles relating to the inclusion criteria. Which is measuring the cervical range of motion using an IMU. A total of 15 articles were selected through discussion. Degree and the reliability of the cervical range of motion and the validity of the data within the articles were extracted. Results: The measurement of the cervical range of motion using an IMU were $92.25^{\circ}$ to $138.2^{\circ}$, $122.4^{\circ}$ to $154.9^{\circ}$, $73.75^{\circ}$ to $93.1^{\circ}$ on the sagittal plane, transverse plane, and coronal plane respectively. 38 of the 43 values showed good reliability. They were larger than 0.75. 5 of the 43 values showed reliability less than 0.75. They were measured by smart phone. 16 of the 21 values showed good validity. The remaining 5 were measured by smart phone. The lower reliability and validity of smart phone were related to the protocol. The IMU can measure the coupling motion and may be used in various situations. Conclusion: The IMU may become a gold standard for measuring the cervical range of motion. The IMU measured not only the cervical range of motion but also the coupling motion. Furthermore, IMU may be used in various situations. Therefore, IMU must be considered a valuable measurement device.

Vibration Analysis of Annular Plate Combined Cylindrical Shells Considering Additional Deformations (추가변형을 고려한 환원판 결합 원통셸의 진동해석)

  • Kim, Young-Wann;Chung, Kang
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.551-556
    • /
    • 2004
  • The theoretical method is developed to investigate the vibration characteristics of the combined cylindrical shells with an annular plate joined to the shell at any arbitrary axial position. The structural rotational coupling between shell and plate is simulated using the rotational artificial spring. For the translational coupling, the continuity conditions for the displacements of shell and plate are used. For the uncoupled annular plate, the transverse motion is considered and the in-plane motions are not. And the additional transverse and in-plane motions of the coupled annular plate by shell deformation are considered in analysis. Theoretical formulations are based on Love's thin shell theory. The frequency equation of the combined shell with an annular plate is derived using the Rayleigh-Ritz approach. The effect of inner-to-outer radius ratio, axial position and thickness of annular plate on vibration characteristics of combined cylindrical shells is studied. To demonstrate the validity of present theoretical method, the finite element analysis is performed.

  • PDF

Transverse Vibration of ATM Crown belt (ATM용 크라운벨트의 횡진동 해석)

  • Son, Young-Boo;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1212-1217
    • /
    • 2007
  • ATM(automated teller machine) is a machine which can deposit and withdraw money directly. For effective transfer of bills in the machine, crown belts are used. In this paper, the transverse vibration of crown belt is investigated. The equation of motion of the belt is derived using Lagrange's equation. Galerkin's method is applied to convert the partial differential equation to the ordinary differential equations. Experimental investigations are performed on the belt system with the variation of pulley type, eccentricity, and tension. The results of numerical analysis show in good agreement with the experimental results.

  • PDF

Dynamic Response Analysis of Composite H-type Cross-section Beams (복합재료 H-형 단면 보의 동적응답 해석)

  • Kim, Sung-Kyun;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.6
    • /
    • pp.583-592
    • /
    • 2010
  • Equations of motion of thin-walled composite H-type cross-section beams exposed to concentrated harmonic and non-harmonic time-dependent external excitations, incorporating a number of nonclassical effects of transverse shear, primary and secondary warping, and anisotropy of constituent materials are derived. The forced vibration response characteristics of a composite H-type cross-section beam exhibiting the circumferentially asymmetric stiffness(CAS) configuration are exploited in connection with the structural bending-torsion coupling resulting from directional properties of fiber reinforced composite materials.

A study on transverse vibration characteristics of a sandwich plate with asymmetrical faces

  • Ahn, Namshik;Lee, Kangsu
    • Structural Engineering and Mechanics
    • /
    • v.40 no.4
    • /
    • pp.501-515
    • /
    • 2011
  • Sandwich elements have high flexural rigidity and high strength per density. They also have excellent anti-vibration and anti-noise characteristics. Therefore, they are used for structures of airplanes and high speed ships that must be light, as well as strong. In this paper, the Reissner-Mindlin's plate theory is studied from a Hamilton's principle point of view. This theory is modified to include the influence of shear deformation and rotary inertia, and the equation of motion is derived using energy relationships. The theory is applied to a rectangular sandwich model which has isotropic, asymmetrical faces and an isotropic core. Investigations are conducted for five different plate thicknesses. These plates are identical to the sandwich plates currently used in various structural elements of surface effect ships (SES). The boundary conditions are set to simple supports and fixed supports. The elastic and shear moduli are obtained from the four-point bending tests on the sandwich beams.