• 제목/요약/키워드: Transparent oxide semiconductor

검색결과 138건 처리시간 0.029초

SnO2 기반의 투명 UV 광 검출기 (SnO2-Embedded Transparent UV Photodetector)

  • 이경남;박왕희;김준동
    • 한국전기전자재료학회논문지
    • /
    • 제30권12호
    • /
    • pp.806-811
    • /
    • 2017
  • An all-transparent ultraviolet (UV) photodetector was fabricated by structuring $p-NiO/n-SnO_2/ITO$ on a glass substrate. $SnO_2$ is an important semiconductor material because of its large bandgap, high electron mobility, high transmittance (as high as 80% in the visible range), and high stability under UV light. For these reasons, $SnO_2$ is suitable for a range of applications that involve UV light. In order to form a highly transparent p-n junction for UV detection, $SnO_2$ was deposited onto a device containing NiO as a high-transparent metal conductive oxide for UV detection. We demonstrated that all-transparent UV photodetectors based on $SnO_2$ could provide a definitive photocurrent density of $4nA\;cm^{-2}$ at 0 V under UV light (365 nm) and a low saturation current density of $2.02nA{\times}cm^{-2}$. The device under UV light displayed fast photoresponse with times of 31.69 ms (rise-time) and 35.12 ms (fall-time) and a remarkable photoresponse ratio of 69.37. We analyzed the optical and electrical properties of the $NiO/SnO_2$ device. We demonstrated that the excellent properties of $SnO_2$ are valuable in transparent photoelectric device applications, which can suggest various routes for improving the performance of such devices.

Structure and Properties of Indium Tin Oxide Thin Films Sputtered from Different Target Densities

  • Kim Kyoo Ho;Jung Young Hee;Munir Badrul;Wibowo Rachmat Adhi
    • 한국표면공학회지
    • /
    • 제38권5호
    • /
    • pp.179-182
    • /
    • 2005
  • Indium Tin Oxide (ITO) thin films were deposited from various target densities ($98.7\%\~99.6\%$) using RF magnetron sputtering. Effect of the sputtering target densities on the structural, electrical and optical properties of deposited ITO thin films was investigated. The preferable (400) crystalline orientation peak was observed on the films deposited from > $99.0\%$ target density. Higher target density produced films with higher roughness but lower resistivity. All of the deposited films showed optical transmittance more than $85\%$ in the visible wavelength region. It is necessary to use the highest target density for sputtering deposition of ITO thin films.

Characteristics of p-Cu2O/n-Si Heterojunction Photodiode made by Rapid Thermal Oxidation

  • Ismail, Raid A.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제9권1호
    • /
    • pp.51-54
    • /
    • 2009
  • Transparent Cuprous oxide film was deposited by rapid thermal oxidation (RTO) of Cu at $500^{\circ}C$/45s condition on textured single-crystal n-Si substrate to form $Cu_2O$/n-Si heterojunction photodiode. The Hall effect measurements for the $Cu_2O$ films showed a p-type conductivity. The photovoltaic and electrical properties of the junction at room temperature were investigated without any post-deposition annealing. I-V characteristics revealed that the junction has good rectifying properties. The C-V data showed abrupt junction and a built-in potential of 1 V. The photodiode showed good stability and high responsivity in the visible at three regions; 525 nm, 625-700 nm, and 750nm denoted as regions A, B, and C, respectively.

Al3+와 Y3+ 동시치환 SnO2 투명전극 박막의 전기적 특성 (Electrical Properties of Al3+ and Y3+ Co-doped SnO2 Transparent Conducting Films)

  • 김근우;서용준;성창훈;박근영;조호제;허시내;구본흔
    • 한국전기전자재료학회논문지
    • /
    • 제25권10호
    • /
    • pp.805-810
    • /
    • 2012
  • Transparent conducting oxides (TCOs) have wide range of application areas in transparent electrode for display devices, Transparent coating for solar energy heat mirrors, and electromagnetic wave shield. $SnO_2$ is intrinsically an n-type semiconductor due to oxygen deficiencies and has a high energy-band gap more than 3.5 eV. It is known as a transparent conducting oxide because of its low resistivity of $10^{-3}{\Omega}{\cdot}cm$ and high transmittance over 90% in visible region. In this study, co-doping effects of Al and Y on the properties of $SnO_2$ were investigated. The addition of Y in $SnO_2$ was tried to create oxygen vacancies that increase the diffusivity of oxygen ions for the densification of $SnO_2$. The addition of Al was expected to increase the electron concentration. Once, we observed solubility limit of $SnO_2$ single-doped with Al and Y. $\{(x/2)Al_2O_3+(x/2)Y_2O_3\}-SnO_2$ was used for the source of Al and Y to prevent the evaporation of $Al_2O_3$ and for the charge compensation. And we observed the valence changes of aluminium oxide because generally reported of valence changes of aluminium oxide in Tin - Aluminium binary system. The electrical properties, solubility limit, densification and microstructure of $SnO_2$ co-doped with Al and Y will be discussed.

Diffusion Currents in the Amorphous Structure of Zinc Tin Oxide and Crystallinity-Dependent Electrical Characteristics

  • Oh, Teresa
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권4호
    • /
    • pp.225-228
    • /
    • 2017
  • In this study, zinc tin oxide (ZTO) films were prepared on indium tin oxide (ITO) glasses and annealed at different temperatures under vacuum to investigate the correlation between the Ohmic/Schottky contacts, electrical properties, and bonding structures with respect to the annealing temperatures. The ZTO film annealed at $150^{\circ}C$ exhibited an amorphous structure because of the electron-hole recombination effect, and the current of the ZTO film annealed at $150^{\circ}C$ was less than that of the other films because of the potential barrier effect at the Schottky contact. The drift current as charge carriers was similar to the leakage current in a transparent thin-film device, but the diffusion current related to the Schottky barrier leads to the decrease in the leakage current. The direction of the diffusion current was opposite to that of the drift current resulting in a two-fold enhancement of the cut-off effect of leakage drift current due to the diffusion current, and improved performance of the device with the Schottky barrier. Hence, the thin film with an amorphous structure easily becomes a Schottky contact.

Study of Magnetic Field Shielded Sputtering Process as a Room Temperature High Quality ITO Thin Film Deposition Process

  • Lee, Jun-Young;Jang, Yun-Sung;Lee, You-Jong;Hong, Mun-Pyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.288-289
    • /
    • 2011
  • Indium Tin Oxide (ITO) is a typical highly Transparent Conductive Oxide (TCO) currently used as a transparent electrode material. Most widely used deposition method is the sputtering process for ITO film deposition because it has a high deposition rate, allows accurate control of the film thickness and easy deposition process and high electrical/optical properties. However, to apply high quality ITO thin film in a flexible microelectronic device using a plastic substrate, conventional DC magnetron sputtering (DMS) processed ITO thin film is not suitable because it needs a high temperature thermal annealing process to obtain high optical transmittance and low resistivity, while the generally plastic substrates has low glass transition temperatures. In the room temperature sputtering process, the electrical property degradation of ITO thin film is caused by negative oxygen ions effect. This high energy negative oxygen ions(about over 100eV) can be critical physical bombardment damages against the formation of the ITO thin film, and this damage does not recover in the room temperature process that does not offer thermal annealing. Hence new ITO deposition process that can provide the high electrical/optical properties of the ITO film at room temperature is needed. To solve these limitations we develop the Magnetic Field Shielded Sputtering (MFSS) system. The MFSS is based on DMS and it has the plasma limiter, which compose the permanent magnet array (Fig.1). During the ITO thin film deposition in the MFSS process, the electrons in the plasma are trapped by the magnetic field at the plasma limiters. The plasma limiter, which has a negative potential in the MFSS process, prevents to the damage by negative oxygen ions bombardment, and increases the heat(-) up effect by the Ar ions in the bulk plasma. Fig. 2. shows the electrical properties of the MFSS ITO thin film and DMS ITO thin film at room temperature. With the increase of the sputtering pressure, the resistivity of DMS ITO increases. On the other hand, the resistivity of the MFSS ITO slightly increases and becomes lower than that of the DMS ITO at all sputtering pressures. The lowest resistivity of the DMS ITO is $1.0{\times}10-3{\Omega}{\cdot}cm$ and that of the MFSS ITO is $4.5{\times}10-4{\Omega}{\cdot}cm$. This resistivity difference is caused by the carrier mobility. The carrier mobility of the MFSS ITO is 40 $cm^2/V{\cdot}s$, which is significantly higher than that of the DMS ITO (10 $cm^2/V{\cdot}s$). The low resistivity and high carrier mobility of the MFSS ITO are due to the magnetic field shielded effect. In addition, although not shown in this paper, the roughness of the MFSS ITO thin film is lower than that of the DMS ITO thin film, and TEM, XRD and XPS analysis of the MFSS ITO show the nano-crystalline structure. As a result, the MFSS process can effectively prevent to the high energy negative oxygen ions bombardment and supply activation energies by accelerating Ar ions in the plasma; therefore, high quality ITO can be deposited at room temperature.

  • PDF

Poly (4-vinylphenol) 게이트 절연체를 적용한 IGZO TFT의 열처리 온도에 따른 전기적 특성 분석 (Electrical Characteristic Analysis of IGZO TFT with Poly (4-vinylphenol) Gate Insulator according to Annealing Temperature)

  • 박정현;정준교;김유정;정병준;이가원
    • 반도체디스플레이기술학회지
    • /
    • 제16권1호
    • /
    • pp.97-101
    • /
    • 2017
  • In this paper, IGZO thin film transistor (TFT) was fabricated with cross-linked Poly (4-vinylphenol) (PVP) gate dielectric for flexible, transparent display applications. The PVP is one of the candidates for low-temperature gate insulators. MIM structure was fabricated to measure the leakage current and evaluate the insulator properties according to the annealing temperature. Low leakage current ( <0.1nA/cm2 @ 1MV/cm ) was observed at $200^{\circ}C$ annealing condition and decreases much more as the annealing temperature increases. The electrical characteristics of IGZO TFT such as subthreshold swing, mobility and ON/OFF current ratio were also improved, which shows that the performance of IGZO TFTs with PVP can be enhanced by reducing the amount of incomplete crosslinking in PVP.

  • PDF

RF magnetron sputtering법으로 제조한 Al doped ZnO 박막의 산소함량과 압력변화에 따른 전기적 특성 변화 (Electrical properties of the Al doped ZnO thin films fabricated by RF magnetron sputtering system with working pressure and oxygen contents)

  • 김종욱;김홍배
    • 반도체디스플레이기술학회지
    • /
    • 제9권4호
    • /
    • pp.77-81
    • /
    • 2010
  • The AZO thin films were deposited on the corning 1737 glass plate by the RF magnetron sputtering and effects of working pressure and oxygen contents on the electrical properties were investigated. XRD spectra showed a preferred orientation along the c-axis and a minimum FWHM for the 70mTorr. From the surface analysis (AFM), the number of crystal grain of AZO thin film increased as working pressure increased. The film deposited with 70mTorr of working pressure showed n-type semiconductor characteristic having suitable resistivity $-1.59{\times}10^{-2}{\Omega}cm$, carrier concentration $-10.1{\times}10^{19}cm^{-3}$, and mobility $-4.35cm^2V^{-1}s^{-1}$ while other films by 7 mTorr, 20 mTorr of working pressure closed to metallic films. The films including the oxygen represent stoichiometric composition similar to the oxide. The transmittance of the film was over 85% in the visible light range regardless of the changes in working pressure and oxygen contents.

Boosting up the photoconductivity and relaxation time using a double layered indium-zinc-oxide/indium-gallium-zinc-oxide active layer for optical memory devices

  • Lee, Minkyung;Jaisutti, Rawat;Kim, Yong-Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.278-278
    • /
    • 2016
  • Solution-processed metal-oxide semiconductors have been considered as the next generation semiconducting materials for transparent and flexible electronics due to their high electrical performance. Moreover, since the oxide semiconductors show high sensitivity to light illumination and possess persistent photoconductivity (PPC), these properties can be utilized in realizing optical memory devices, which can transport information much faster than the electrons. In previous works, metal-oxide semiconductors are utilized as a memory device by using the light (i.e. illumination does the "writing", no-gate bias recovery the "reading" operations) [1]. The key issues for realizing the optical memory devices is to have high photoconductivity and a long life time of free electrons in the oxide semiconductors. However, mono-layered indium-zinc-oxide (IZO) and mono-layered indium-gallium-zinc-oxide (IGZO) have limited photoconductivity and relaxation time of 570 nA, 122 sec, 190 nA and 53 sec, respectively. Here, we boosted up the photoconductivity and relaxation time using a double-layered IZO/IGZO active layer structure. Solution-processed IZO (top) and IGZO (bottom) layers are prepared on a Si/SiO2 wafer and we utilized the conventional thermal annealing method. To investigate the photoconductivity and relaxation time, we exposed 9 mW/cm2 intensity light for 30 sec and the decaying behaviors were evaluated. It was found that the double-layered IZO/IGZO showed high photoconductivity and relaxation time of 28 uA and 1048 sec.

  • PDF

이층 박막 구조에서 ITO 전극의 레이저 직접 패터닝 시레이저 식각 패턴 중첩 비율의 변화 (Overlapping Rates of Laser Spots on the Laser Direct Patterning of ITO Electrode in the Double-layer Structure of Thin Film)

  • 왕건훈;박정철;권상직;조의식
    • 한국전기전자재료학회논문지
    • /
    • 제25권5호
    • /
    • pp.377-380
    • /
    • 2012
  • Laser direct patterning of indium tin oxide(ITO) is one of new methods of direct etching process to replace the conventional photolithography. A diode pumped Q-switched Nd:$YVO_4$ (${\lambda}$= 1,064 nm) laser was used to produce ITO electrode on various transparent oxide semiconductor films such as zinc oxide(ZnO). The laser direct etched ITO patterns on ZnO were compared with those on glass substrate and were considered in terms of the overlapping rate of laser beam. In case of the laser etching on double-layer, it was possible to obtain the higher overlapping rate of laser beam.